Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Магнитный и гравитационный скважинные методы.

Поиск

В магнитном скважинном методе (магнитном каротаже) изучается либо магнитная восприимчивость пород, окружающих ствол скважины, либо изменения вертикальной составляющей геомагнитного поля с помощью скважинных магнитометров. По магнитограммам можно судить о местоположении и мощности слоев с повышенными магнитными свойствами. Магнитный каротаж применяется при изучении разрезов скважин, для выявления железных, полиметаллических руд с вкрапленностью ферромагнитных минералов, а также выделения пластов песчаников, кварцитов, изверженных пород. Ценное преимущество этого метода - возможность выявления высокомагнитных руд, расположенных в стороне (от 1 до 30 м) от скважины.

К магнитному близок метод ядерно-магнитного каротажа (ЯМК), в котором изучается свободная прецессия протонов жидкости, окружающей ствол скважины. Этот метод может применяться для изучения коллекторских свойств пород и их водонасыщенности.

При гравиметрических исследованиях в скважинах (гравиметрическом каротаже) вдоль ствола скважины через 50 - 100 м с помощью специальных скважинных гравиметров измеряется приращение силы тяжести с глубиной. Гравиметрический каротаж может проводиться как в необсаженных, так и в обсаженных скважинах. В результате обработки кривых вдоль ствола скважины можно определить среднюю плотность пород в естественном залегании на разных глубинах и в радиусе нескольких метров от оси скважины.

Реология.

 

Реология занимается изучением остаточных деформаций и течения вязких и пластичных материалов. Применительно к Земле это обычно означает исследование вязкости внутренних слоев и ее изменений во времени, а также глубинных движений вдоль разломов, перемещений литосферы относительно астеносферы, субдукции литосферных плит, трещинообразования в горных породах, крипа и т.п. Прямые измерения вязкости в недрах Земли невозможны, однако ее оценки могут быть выполнены на основе изучения скорости поднятий таких древних областей, как Канадский и Балтийский щиты, ранее опустившихся под действием ледниковой нагрузки.

На основе исследований горных пород при высоких давлениях изучаются их свойства и интерпретируются данные о скоростях распространения сейсмических волн и распределении плотности вещества в недрах Земли. Таким образом определяется минералогический состав ее внутренних слоев. Экспериментальные методы включают ультразвуковые измерения скорости как функции давления. При помощи специальной техники можно генерировать высокие давления, по крайней мере до 1000 кбар (100 ГПа). Под действием ударного сжатия или в камерах с алмазными наковальнями могут быть получены более высокие давления, чем в центре Земли (~3600 кбар, или 360 ГПа).

В идеальном случае для полного понимания процессов, происходящих в глубине Земли, необходимо знать зависимости скоростей распространения продольных и поперечных волн, модуля упругости, плотности, коэффициента термического расширения, удельной теплоемкости, температуры плавления, вязкости, электро- и теплопроводности горных пород от давления. Поскольку эти сведения невозможно получить путем непосредственных наблюдений, бóльшая часть современных знаний предстает в форме теоретически рассчитанных уравнений состояния как функции от плотности. На основе использования уравнений состояния экспериментальные данные экстраполируются на область высоких давлений, характерных для недр Земли.

Важную роль в определении свойств, не поддающихся непосредственным измерениям, и интерпретации сейсмических данных для определения состава пород и фазовых переходов в Земле играют опытным путем установленные соотношения между скоростями волн, плотностью и атомным весом.

 

Экологическая геофизика.

Экологическая геофизика (экогеофизика) - это научно-прикладной раздел геофизики, предназначенный для решения экологических задач с целью изучения состояния и динамики взаимоотношений человека и биоты (" живого вещества ") с верхней частью литосферы (каменной оболочки Земли, которую совместно с подземной гидросферой называют гидролитосферой) и, в первую очередь, верхней части разреза.

Верхней частью разреза (ВЧР) называется приповерхностная часть геологической среды мощностью в десятки, реже первые сотни метров. Она включает почвы, грунты, горные породы, поверхностные, грунтовые и подземные воды, приповерхностные физико-геологические явления (оползни, карст и т.п.), объекты человеческой деятельности. ВЧР в наибольшей степени подвержена экзогенным (атмосферным и поверхностным) и техногенным (физико-химическим и энергетическим) процессам, в меньшей - воздействию эндогенных (внутриземных) факторов.

Геофизическая среда, как часть литосферы, характеризуется нелинейностью и изменчивостью во времени параметров. Нелинейность проявляется в тензочувствительности (зависимости упругих параметров горных пород от давления), флюидочувствительности (зависимости упругих, электромагнитных и других параметров не только от геохимического состава твердой фазы горных пород, но и состава флюидов (вода, нефть, газ), их перемещений) и неадекватной реакции среды на внешние воздействия. Вариации космических полей во времени приводят как к ритмичным (упорядоченным), так и хаотичным (случайным) изменениям параметров естественных и искусственных земных физических полей и сопровождающих их процессов.

Цели экогеофизики сводятся к выяснению следующих экологических свойств и функций литосферы:

· органо-минеральные, необходимые для жизни биоты и человека;

· структурные (геодинамические) нарушения ВЧР;

· вещественные (геохимические) изменения в ВЧР;

· энергетические (полевые, физические) загрязнения окружающей человека и биоту среды.

Основными решаемыми задачами можно считать следующие:

- Изучение изменений приповерхностных частей литосферы под влиянием природных и техногенных катастрофических и медленных процессов и оценка их экологических последствий.

- Создание методов оценки экологической устойчивости литосферы и способов сохранения ее экологических функций.

- Медико-биологическое и социально-экологическое обеспечение деятельности людей, связанной с геологической средой.

Литосфера и геологическая среда являются предметом исследований всех методов прикладной геофизики: глубинной, региональной, разведочной и инженерной, а экологические задачи в какой-то мере давно ими решаются. Однако возрастающая роль экологии в жизни людей и движения общественности за сохранение окружающей среды, как и сложность поставленных проблем, приводят к необходимости создания отдельных научно-прикладных дисциплин - экологической геологии и экологической геофизики, так же тесно связанных между собой, как и фундаментальные науки - геология и геофизика.

Главная особенность экогеологии и экогеофизики состоит в организации мониторинга, т.е. слежения за изменением состояния геологической среды с целью определения места и времени как быстрых (катастрофических), так и медленных (эволюционных) отклонений от нормального устойчивого состояния. Эти отклонения сказываются на функционировании природно-техногенных (технических) систем (ПТС), таких, например, как крупные электростанции, отдельные природно-техногенно-социальные объекты (ПТСО), хранилища ядерных отходов, и особенно природно-техногенных процессов (ПТП). К последним относятся естественные и искусственно вызванные землетрясения, горные удары, оползни, сели, взрывы и т.п.

Экологическая геофизика является научно-прикладным разделом геофизической экологии.

Предметом исследования геофизической экологии являются физическое состояние и свойства, изменение в пространстве и во времени естественных (космических и земных), искусственных (антропогенно-техногенных) физических полей окружающей человека и биоту среды. В нее с учетом сказанного выше входят:

· природная среда (части атмосферы, литосферы, гидросферы);

· геологическая среда (почвы, грунты, горные породы и подземные воды);

· географическая среда (географические системы или природно-территориальные комплексы разного уровня организации (фации, урочища, наборы урочищ, ландшафты), взаимосвязанные в пространственно-временной организации материи на уровне ландшафтной среды Земли);

· поверхностная гидросфера (акватории рек, озер, шельфы морей и океанов);

· биосфера и техносфера (биотехносфера);

· социосфера.

 

Сейсморазведка.

Сейсморазведка - это геофизический метод исследования строения Земли, поисков и разведки нефти и газа, а также других полезных ископаемых, основанный на изучении распространения упругих волн, возбужденных искусственно с помощью тех или иных источников: взрывов, ударов и др. Горные породы отличаются по упругим свойствам и поэтому обладают различными скоростями распространения упругих волн. Это приводит к тому, что на границах слоев, где скорости меняются, могут образоваться отраженные, преломленные, рефрагированные, дифрагированные и другие волны. Регистрируя эти волны на земной поверхности можно получить информацию о скоростном разрезе, а по нему судить о геологическом строении.

Методика сейсморазведки основана на изучении кинематики волн (обычно подразумевающее измерение времени пробега различных волн от пункта их возбуждения до места регистрации) и их динамики (т.е. формы) или их интенсивности. Сейсмические волны генерируются или искусственными взрывами в неглубоких скважинах, или с помощью механических виброисточников. В морской сейсмике для возбуждения сейсмических волн используется пневмопушка. Применяются также эхолотные излучатели упругих колебаний большой мощности, электроискровые разряды и другие средства.

В сейсморазведке используются два основные метода: метод отраженных волн (МОВ) и метод преломленных волн (МПВ). Методы, использующие другие волны, находят меньшее применение.

Направленные вниз генерируемые волны, достигая геологической границы (т.е. пород, состав которых отличается от вышележащих), отражаются подобно эху. Регистрация этого «эха» детекторами называется методом отраженных волн. При использовании метода отраженных волн регистрация осуществляется набором геофонов, равномерно располагающихся на земной поверхности на одной линии с источником возбуждения. Поскольку известны расстояние до геофона и скорость распространения сейсмических волн в изучаемых породах, по временам пробега волн можно рассчитать глубину отражающей границы. Путь волны может быть описан в виде двух сторон равнобедренного треугольника (так как угол падения равен углу отражения), а глубина отражающего слоя соответствует его вершине. Суммарная длина сторон такого треугольника равна произведению времени прохождения волны и ее скорости. Глубины поверхности отражения рассчитываются в пределах достаточно обширной площади, что позволяет проследить конфигурацию пласта, обнаружить и нанести на карту соляные купола, рифы, разломы и антиклинали. Любая из этих структур может оказаться нефтяной ловушкой.

Методом преломленных волн исследуются литология и глубина залегания горных пород, а также конфигурация залежей и геологических свит. Он используется и при инженерно-геологических изысканиях, в гидрогеологии, морской и нефтяной геологии. Сейсмические волны возбуждаются близ земной поверхности, а детекторы, регистрирующие преломленные волны, расположены на земной поверхности на некотором расстоянии от источника колебаний (иногда удаленном на многие километры). Преломляющиеся на геологической границе волны распространяются также и горизонтально (вдоль ее поверхности) на большие расстояния, затем вновь преломляются, следуют к земной поверхности и регистрируются вдали от сейсмического источника. Первой достигает детектора та преломленная волна, которая следовала по кратчайшему пути от источника к приемнику. По годографу (графику времени прихода первого импульса волн к сейсмоприемникам, расположенным на разных расстояниях от источника) определяют скорость распространения волн, а затем вычисляют глубину залегания преломляющей поверхности.

Регистрация сейсмических волн ведется чувствительными приборами сейсмоприемниками, или геофонами, которые располагаются на земной поверхности или в скважинах на определенном расстоянии от места возбуждения волн. Геофоны преобразуют механические колебания грунта в электрические сигналы. При морских исследованиях для регистрации сейсмических волн используются детекторы давления, называемые гидрофонами. Упругие колебания записываются в виде трасс. Интерпретация сейсмограмм позволяет измерить время прохождения волны от источника до отражающего слоя и обратно к поверхности с точностью до тысячных долей секунды. Скорость сейсмических волн зависит от упругости и плотности среды, в которой они распространяются. В воде она составляет ок. 1500 м/с, в неконсолидированных песках и почвах, содержащих воздух в поровых пространствах, 600-1500 м/с, в твердых известняках 2700-6400 м/с и в наиболее плотных кристаллических породах до 8500 м/с.

По решаемым задачам различают глубинную, структурную, нефтегазовую, рудную, инженерную сейсморазведку. По месту проведения сейсморазведка подразделяется на наземную (полевую), акваториальную (морскую), скважинную и подземную, а по частотам колебаний используемых упругих волн можно выделить высокочастотную (частоты свыше 100 Гц), среднечастотную (частоты в несколько десятков герц) и низкочастотную (частоты менее 10 Гц) сейсморазведку. Чем выше частота упругих волн, тем больше их затухание и меньше глубинность разведки.

Сейсморазведка - очень важный и во многих случаях самый точный (хотя и самый дорогой и трудоемкий) метод геофизической разведки, применяющийся для решения различных геологических задач с глубинностью от нескольких метров (изучение физико-механических свойств пород) до нескольких десятков и даже сотен километров (изучение земной коры и верхней мантии). Однако главное назначение сейсморазведки - поиск и разведка нефти и газа.

В России сейсморазведка применяется с двадцатых годов прошлого века для решения различных геологических задач, особенно в нефтяной геологии. В настоящее время свыше трех четвертей геофизических исследований составляют сейсмические.

Возникла сейсморазведка как раздел сейсмологии - науки о землетрясениях.

Для проведения сейсморазведки используются сложные комплекты аппаратуры, включающие:

- источники возбуждения упругих волн (взрывные и невзрывные);

- устройства, воспринимающие упругие колебания и преобразующие их в электрические сигналы (сейсмоприемники или геофоны при наземных работах, пьезоприемники и гидрофоны при работах на акваториях);

- сейсмостанции, включающие многоканальные усилители и регистраторы (как правило, цифровые);

- компьютеры для обработки информации;

- вспомогательное оборудование (буровые станки, автомобили для транспортировки приемных установок, провода и прочее).

Для возбуждения упругих волн на земной поверхности, в неглубоких (до 50 м) скважинах или в водоемах используются различные источники. Простейшими являются удары молотком, кувалдой или падающим грузом по земной поверхности. Долгое время основным способом создания упругих волн являлся подрыв взрывчатых веществ (ВВ) типа тротил, аммонит, порох весом от 100 г до сотен килограмм в скважинах, водоемах. Подрыв ВВ осуществляется с помощью электродетонаторов и специальной взрывной машинки, подающей в них высоковольтный электрический импульс.

Ввиду сложности организации и проведения взрывных работ, а также их экологического вреда в последнее время используются разного рода невзрывные источники с импульсным (10-3 - 10-1 с) или квазинепрерывным (2 - 20 с) возбуждением. К импульсным относится установка газовой детонации, в которой используется газовзрывная смесь (например, пропан и кислород), находящаяся в цилиндре с подвижным поршнем. Цилиндр монтируется под грузовиком. При сгорании смеси поршень ударяет вниз, а удар вверх сдерживается массой грузовика. В виброисточниках, предназначенных для возбуждения квазинепрерывных упругих колебаний, в аналогичный цилиндр, как в гидравлический домкрат, нагнетается масло. При резком изменении объема масла платформа и грузовик своей массой ударяют по земной поверхности.

В электроискровых источниках упругое поле создается электрическим разрядом в воде от электрической энергии, накопленной от какого-нибудь источника в конденсаторах. Под воздействием электровзрыва окружающая его жидкость образует перегретый пар или парогазовую полость давления, которая в окружающей жидкости создает упругую волну.

В пневматической пушке в воду под высоким давлением выбрасывается воздух, накапливаемый в специальной камере. Существуют и другие источники.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 467; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.87 (0.016 с.)