Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение и общая характеристика фотосинтеза, значение фотосинтеза↑ Стр 1 из 5Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Определение и общая характеристика фотосинтеза, значение фотосинтеза ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов. С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы. Общая характеристика 6CO2 + 6H2O → C6H12O6 + O2 Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно. I Световая фаза 1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами. 2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды. II Темновая фаза 3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов. ЗНАЧЕНИЕ 1. Обеспечение постоянства СО2 в воздухе. Связывание СО2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества). 2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО2поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО2 в воздухе активирует фотосинтез и, следовательно, концентрация СО2 в воздухе опять уменьшится. 3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза. 4. Озоновый экран. Озон (О3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей. Пигменты фотосинтезирующих растений, их физиологическая роль. · Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему. В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм. Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта. Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой. Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ 1) избирательно поглощать энергию света, 2) запасать ее в виде энергии электронного возбуждения, 3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений. · Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета — присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла. К каротиноидам относятся 3 группы соединения: - оранжевые, или красные каротины; - жёлтые ксантофиллы; - каротиноидные кислоты. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ 1) Поглощение света в качестве дополнительных пигментов; 2) Защита молекул хлорофилла от необратимого фотоокисления; 3) Тушение активных радикалов; 4) Участвуют в фототропизме, т.к. способствуют направлению роста побега. · Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на: - фикоэритрины – белки красного цвета; - фикоцианин – синеголубые белки; - алофикоцианин – синие белки. Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду. На глубине 30 м полностью исчезают красные лучи На глубине 180 м – жёлтые На глубине 320 м – зелёные На глубине более 500 м не проникают синие и фиолетовые лучи. Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.
ФИЗИОЛОГИЧЕСКАЯ РОЛЬ 1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр. 2) Фикобилины выполняют у водорослей функции светособирающего комплекса. 3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений. Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов. Сущность фотофизического этапа Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой). Фотохимический этап Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ. Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2. Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей: · главного антенного компонента · двух фото фиксирующих систем. Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы: · установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1, · фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2. Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны 700нм. Во второй системе 680нм. Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов. Различают два типа потока электронов: · циклический · нециклический. При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно, при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ, выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.
Фотосистема I Светособирающий комплекс I содержит примерно 200 молекул хлорофилла. В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор — хлорофилл a, тот — вторичный (витамин K1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы. Белок пластоцианин, восстановленный в b6f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.
Фотосистема II Фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).
П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.
Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.
Таким образом, суммарный результат работы ФС II — это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.
Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса. Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом. Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование. Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением: Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее: __________________________________________________________________________ Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е- —> ПХ-2. Пластохинон — производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ-2 + 2Н+ -> ПХН2. Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл680 на Хл700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН+), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н+ по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны). __________________________________________________________________________ Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором. Этот комплекс по форме напоминает гриб и состоит из двух частей — факторов сопряжения: круглой шляпки F1, выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F1. Белок F1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F1 не способен синтезировать АТФ. Способность синтезировать АТФ — это свойство единого комплекса F0—F1, встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану. Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается. С4 путь фотосинтеза С4-путь фотосинтеза или цикл Хетча-Слэка Австралийскими учеными М. Хетчем и К. Слэком был описан С4-путь фотосинтеза, характерный для тропических и субтропических растений однодольных и двудольных 16 семейств (сахарный тростник, кукуруза и др.). Большинство самых злостных сорняков – С4 растения, а большинство сельскохозяйственных культур относятся к С3-растениям. Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки. В цитоплазме клеток мезофилла фосфоэнолпируваткарбоксилаза присоединяет СО2 к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН (фермент НАДФ+-зависимая малатдегидрогеназа). В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту (фермент - аспартатаминотрансфераза). Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются до пировиноградной кислоты и СО2. СО2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту. В зависимости от того, какая кислота – малат или аспартат – транспортируется в клетки обкладки, растения делят на два типа: малатный и аспартатный. В клетках обкладки эти С4-кислоты декарбоксилируются, что происходит у разных растений происходит с участием различных ферментов: НАДФ+-зависимой малатдегидрогеназы декарбоксилирующей (НАДФ+-МДГ), НАД+-зависимой малатдегидрогеназы декарбоксилирующей (малик-энзим, НАД+-МДГ) и ФЭП-карбоксикиназы (ФЕП-КК). Поэтому растения делят еще на три подтипа: НАДФ+-МДГ-растения, НАД+-МДГ-растения ФЕП-КК-растения. Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза. Фотосинтез по типу толстянковых (суккулентов)-САМ путь. В сухих местах существуют растения-суккуленты, у которых устьица открыты ночью и закрыты днем для уменьшения транспирации. В настоящее время этот тип фотосинтеза обнаружен у представителей 25 семейств. У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae) процессы фотосинтеза разделены не в пространстве, как у других С4-растений, а во времени. Этот тип фотосинтеза получил название CAM (crassulation acid metabolism)-путь. Устьица днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, и открыты ночью. В темноте СО2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется с образованием СО2 и пировиноградной кислоты. СО2 диффундирует в хлоропласты и включается в цикл Кальвина. Итак, темновая фаза фотосинтеза разделена во времени: СО2 поглощение ночью, а восстанавливается днем, из ЩУК образуется малат, карбоксилирование в тканях происходит дважды: ночью карбоксилируется ФЕП, днем РуБФ. В САМ-растения делят на два типа: НАДФ-МДГ-растения, ФЕП-КК-растения. Как С4, САМ-тип является дополнительным, поставляющим СО2 в С3-цикл у растений, приспособившихся к жизни в условиях повышенных температур или недостатка влаги. У некоторых растений этот цикл функционирует всегда, у других – только в неблагоприятных условиях. Фотодыхание. Фотодыхание – это активируемый светом процесс выделения СО2 и поглощения О2.(НИ К ФОТОСИНТЕЗУ,НИ К ДЫХАНИЮ НЕ ОТНОСИТСЯ). Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО2 и высокой концентрации О2 в воздухе. В этих условиях рибулозобисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты. Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО2. Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина и образуется 3 ФГА. Дыхание растений Живая клетка представляет собой открытую энергетическую систему, она живёт и сохраняет свою индивидуальность за счет постоянного притока энергии. Как только этот приток прекращается, наступает дезорганизация и смерть организма. Энергия солнечного света, запасенная при фотосинтезе в органическом веществе, вновь высвобождается и используется на самые различные процессы жизнедеятельности. В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается,— это дыхание и брожение. Дыхание — это аэробный окислительный распад органических соединений на простые неорганические, сопровождаемый выделением энергии. Брожение — анаэробный процесс распада органических соединений на более простые, сопровождаемый выделением энергии. В случае дыхания акцептором электрона служит кислород, в случае брожения — органические соединения. Суммарное уравнение процесса дыхания: С6Н1206 + 602 -> 6С02 + 6Н20 + 2824 кДж. Пути дыхательного обмена Существуют две основные системы и два основных пути превращения дыхательного субстрата, или окисления углеводов: 1) гликолиз + цикл Кребса (гликолитический); Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз. Первая фаза — анаэробная (гликолиз), вторая фаза — аэробная. Эти фазы локализованы в различных компартментах клетки. Анаэробная фаза гликолиз — в цитоплазме, аэробная фаза — в митохондриях. Обычно химизм дыхания начинают рассматривать с глюкозы. Вместе с тем в растительных клетках глюкозы мало, поскольку конечными продуктами фотосинтеза являются сахароза как основная транспортная форма сахара в растении или запасные углеводы (крахмал и др.). Поэтому, чтобы стать субстратом дыхания сахароза и крахмал должны гидролизоваться с образованием глюкозы. 2) пентозофосфатный (апотомический). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от -50 до +50°С. Нет приспособлений у растений и к поддержанию равномерного распределения кислорода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена и к еще большему разнообразию ферментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути дыхательного обмена приводит к глубоким изменениям во всем метаболизме растений. Энергитическая 11 АТФ образуется в результате работы ЦК и дыхательной и 1 АТФ в результате субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ). 1 оборот ЦК в аэробных условиях приводит к образованию 12 АТФ Интегративная На уровне ЦК объединяются пути катаболизма белков жиров и углеводов. цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки. Амфиболическая Метаболиты ЦК являются ключевыми на их уровне могут идти переключение с одного вида обмена на другой. 13.ЭТЦ: Компоненты локализация. Механизм окислительного фосфорилирования. Хемиосмотическая теория Митчела. Электрон-транспортная цепь — это цепь редокс-агентов, определенным образом расположенных в мембране хлоропластов, осуществляющих фотоиндуцируемый транспорт электронов от воды к НАДФ+. Движущей силой транспорта электронов по ЭТЦ фотосинтеза являются окислительно-восстановительные реакции в реакционных центрах (РЦ) двух фотосистем (ФС). Первичное разделение зарядов в РЦ ФС1 приводит к образованию сильного восстановителя А0, окислительно-восстановительный потенциал которого обеспечивает восстановление НАДФ+ через цепь промежуточных переносчиков. В РЦ ФС2 фотохимические реакции ведут к образованию сильного окислителя П680, который вызывает ряд окислительно-восстановительных реакций, приводящих к окислению воды и выделению кислорода. Восстановление П700, образованного в РЦ ФС1, происходит за счет электронов, мобилизованных из воды фотосистемой II, при участии промежуточных переносчиков электронов (пластохинонов, редокс-кофакторов цитохромного комплекса и пластоцианина). В отличие от первичных фотоиндуцированных реакций разделения зарядов в реакционных центрах, идущих против термодинамического градиента, перенос электрона на других участках ЭТЦ идет по градиенту окислительно-восстановительного потенциала и сопровождается высвобождением энергии, которая используется на синтез АТФ. компоненты ЭТЦ митохондрий расположены в следующем порядке: Пара электронов от НАДH или сукцината передается по ЭТЦ до кислорода, который, восстанавливаясь и присоединяя два протона, образует воду. Определение и общая характеристика фотосинтеза, значение фотосинтеза ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов. С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы. Общая характеристика 6CO2 + 6H2O → C6H12O6 + O2 Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно. I Световая фаза 1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами. 2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды. II Темновая фаза 3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов. ЗНАЧЕНИЕ 1. Обеспечение постоянства СО2 в воздухе. Связывание СО2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества). 2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО2поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО2 в воздухе активирует фотосинтез и, следовательно, концентрация СО2 в воздухе опять уменьшится. 3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза. 4. Озоновый экран. Озон (О3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 4276; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.193.37 (0.017 с.) |