Гликолиз: химизм, биологическая роль. 





Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гликолиз: химизм, биологическая роль.



В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты: С6Н1206 -> 2С3Н402 + 2Н2. Этот окислительный процесс может протекать в анаэробных условиях и идет через ряд этапов. Прежде всего, для того чтобы подвергнуться дыхательному распаду, глюкоза должна быть активирована. Активация глюкозы происходит путем фосфорилирования шестого углеродного атома за счет взаимодействия с АТФ:

глюкоза + АТФ -> глюкозо-6-фосфат + АДФ

Реакция идет в присутствии ионов магния и фермента гексокиназа. Затем глюкозо-6-фосфат изомеризуется до фруктозо-6-фосфата. Процесс катализи­руется ферментом фосфоглюкоизомеразой:

глюкозо-6-фосфат —> фруктозо-6-фосфат

Далее происходит еще одно фосфорилирование при участии АТФ. Фосфор­ная кислота присоединяется к первому углеродному атому молекулы фруктозы, процесс катализируется ферментом фосфофруктокиназой:

фруктозо-6-фосфат + АТФ -> фруктозо-1,6-дифосфат + АДФ

 

Дальнейшие реакции, составляющие процесс гликолиза, складываются следующим образом: фруктозо-1,6-дифосфат расщепляется с образованием двух триоз, реакция катализируется ферментом альдолазой. Реакция протекает по урав­нению:

Молекула фосфодиоксиацетона при участии фермента триозофосфатизомеразы превращается также в 3-фосфоглицериновый альдегид (ФГА). Дальнейшим превращениям подвергается именно ФГА, окисляясь до 1,3-дифосфоглицериновой кислоты (ДФГК). Это важнейший этап гликолиза. Процесс идет с участием неорганического фосфата (Н3Р04) и фермента глицеральдегид-3-фосфатдегидро-геназы. Сущность процесса заключается в окислении альдегидной группы ФГА в карбоксильную ДФГК. Окисление идет с выделением энергии.

На следующем этапе за счет имеющейся макроэргической связи в 1,3-дифосфоглицериновой кислоте образуется АТФ. Процесс катализируется ферментом фосфоглицераткиназой:

Таким образом, на этом этапе энергия окисления аккумулируется в форме энергии фосфатной связи АТФ. Затем 3-ФГК превращается в 2-ФГК, иначе говоря, фосфатная группа переносится из положения 3 в положение 2. Реакция 1 катализируется ферментом фосфоглицеромутазой и идет в присутствии магния:

Далее происходит дегидратация ФГК. Реакция идет при участии фермента енолазы в присутствии ионов Mg2+или Мп2+. Дегидратация сопровождается перераспределением энергии внутри молекулы, в результате чего возникает макроэргическая связь. Образуется фосфоенолпировиноградная кислота (ФЕП):

атем фермент пируваткиназа переносит богатую энергией фосфатную группу на АДФ с образованием АТФ и пировиноградной кислоты. Для протекания реакции необходимо присутствие ионов Mg2+ или Мn2+:

Поскольку при распаде одной молекулы глюкозы образуются две молекулы ФГА, то все реакции повторяются дважды. Таким образом, суммарное уравнение гликолиза. В результате процесса гликолиза образуются четыре молекулы АТФ, однако две из них покрывают расход на первоначальное активирование субстрата. Следовательно, накапливаются две молекулы АТФ. Образование АТФ в процессе следующее:

глюкоза + 2АТФ+ 2НАД+ + 2Фн + 4АДФ→2 пирувата + 4АТФ+ 2НАД.Н2 + 2АДФ.

 

Биологическое значение процесса гликолиза заключается прежде всего в образовании богатых энергией фосфорных соединений. На первых стадиях гликолиза затрачиваются 2 молекулы АТФ последующих образуются 4 молекулы АТФ. Таким образом, энергетическая эффективность гликолиза в анаэробных условиях составляет 2 молекулы АТФ на одну молекулу глюкозы.

 

12. Окислительное декарбоксилирование и Цикл Кребса: Химизм и биологическая роль.

Характеристика основных этапов цикла Кребса

В присутствии достаточного количества кислорода (аэробная фаза дыхания ) пируват полностью окисляется до СО2 и Н2О в дыхательном цикле, получившем название цикла Кребса или цикла ди- и трикарбоновых кислот.

Процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления — электронтранспортная цепь (ЭТЦ) требует обязательного присутствия 02.

Первые две стадии происходят в матриксе митохондрий, электронтранспортная цепь локализована на внут­ренней мембране митохондрий.

Первая стадияокислительное декарбоксилирование пирувата. Непосредственно в цикле окисляется не сам пируват, а его производное - ацетил-СоА, образующегося в ходе окислительного декарбоксилирования. Окислительное декарбоксилирование пирувата осуществляется при участии пируватдегидрогеназного мульти-ферментного комплекса, включающего три фермента и пять коферментов − тиаминпирофосфат (ТПФ) (фосфорилированное производное витамина В1), липоевая кислота, коэнзим A, FAD и NAD +.

Общая формула данного процесса:

СН3СОСООН + НАД + КоА - SH -> CH3CO-S- КоА + НАДН + Н+ + С02

В результате этого процесса образуется активный ацетат − ацетил-КоА, который является источником атомом водорода для дыхательной цепи, восстановленный НАД и выделяется СО2 (первая молекула).

Вторая стадияцикл Кребса. Дальнейшее окисление ацетил-СоА осуществляется в ходе циклического процесса, в котором происходит постепенное преобразование ряда органических кислот. Ацетил-КоА конденсируется с енольной формой щавелевоуксусной кислоты (ЩУК) с образованием лимонной кислоты.

В этой реакции под действием фермента цитратсинтазы образуется лимонная кислота. Следующий этап цикла включает две реакции и катализируется ферментом аконитазой, или аконитатгидратазой. В первой реакции в результате дегидратации лимонной кислоты образуется цис-аконитовая. Во второй реакции аконитат гидратируется и синтезируется изолимонная кислота. Изолимонная кислота под действием НАД- или НАДФ-зависимой изоцитратдегидрогеназы окисляется в нестойкое соединение — щавелевоянтарную кислоту, которая тут же декарбоксилируется с образованием α -кетоглутаровой кислоты (α -оксоглутаровой кислоты).

α-Кетоглутарат подвергается реакции окислительного декарбоксилирования. При этом выделяется СО2, образуются NADH и сукцинил-СоА − высокоэнергетический тиоэфир. При участии сукцинил-СоА-синтетазы из сукцинил-СоА, ADP и Н3РО4 образуются янтарная кислота (сукцинат), АТР, регенерирует молекула СоА. АТР образуется в результате субстратного фосфорилирования.

Третий этап. Янтарная кислота окисляется до фумаровой. Реакция катализируется сукцинатдегидрогеназой, коферментом которой является FAD. Фумаровая кислота под действием фумаразы или фумаратгидратазы, присоединяя Н2О, превращается в яблочную кислоту (малат).

Четвертый этап. Яблочная кислота с помощью NAD-зависимой малатдегидрогеназы окисляется в щавелевоуксусную. ЩУК, которая самопроизвольно переходит в енольную форму, реагирует с очередной молекулой ацетил-СоА и цикл повторяется снова.

Большинство реакций цикла обратимы, однако ход цикла в целом практически необратим.

На протяжении одного оборота цикла при окислении пирувата происходит выделение трех молекул СО2, включение трех молекул Н2О и удаление пяти пар атомов водорода.

Энергетический выход цикла Кребса, его связь с азотным обменом

Цикл Кребса играет чрезвычайно важную роль в обмене веществ растительного организма. Он служит конечным этапом окисления не только углеводов, но также белков, жиров и других соединений. В ходе реакций цикла освобождается основное количество энергии, содержащейся в окисляемом субстрате, причем большая часть этой энергии утилизируется при образовании высокоэнергетических конечных фосфатных связей АТФ.

Функции ЦК: (Это из лекции по Б/х)





Последнее изменение этой страницы: 2016-04-26; просмотров: 2100; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.80.249.22 (0.011 с.)