Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фотодеструктивные процессы. Их общая характеристика.

Поиск

Фотодеструктивные процессы - это процессы нарушения свойств биологических молекул под действием света.


 

Фотосенсибилизация, её виды и механизмы. Фотодинамические процессы, применение в медицине.

Фотодинамические процессы, применение в медицине – лечение опухолей и рака.


 

10. Молекулярная биофизика .

Молекулярная биофизика — раздел биофизики, объясняющий биологические явления с позиций молекулярной физики. Является междисциплинарной наукой, включающей в себя методы и исследования в таких областях, как биохимия, генетика, физика, компьютерное моделирование и так далее.

Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке.

Аминокислоты — мономерные единицы белков, содержашие аминогруппу -NH2,) и карбоксильную группу (-СООН). Аминокислоты делят на заменимые и незаменимые в питании человека. Основной источник аминокислоты — белки пищи. В организме человека аминокислоты обеспечивают синтез собственных белков, гормонов, ферментов и ряда коферментов. Дефицит в пище хотя бы одной из незаменимых аминокислот. сопряжен с нарушением физиол. состояния человека. Недостаток лизина может приводить к задержке роста у детей; лейцина — угнетению психики, головным болям, потере аппетита; аргинина — торможению сперматогенеза у мужчин; метионина -- поражению печени, почек, возникновению анемий и т. д.


Уровни структурной организации белков:

1 — первичная, 2 — вторичная, 3 — третичная, 4 — четвертичная

Первичная структура — последовательность аминокислотных остатков в полипептидной цепи. Первичную структуру белка, как правило, описывают, используя однобуквенные или трёхбуквенные обозначения для аминокислотных остатков. Важными особенностями первичной структуры являются консервативные мотивы — устойчивые сочетания аминокислотных остатков, выполняющие определённую функцию и встречающиеся во многих белках.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков: α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм[22] (на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена.

β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,347 нм на аминокислотный остаток) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали

· π-спирали;

· неупорядоченные фрагменты.

Третичная структура — пространственное строение полипептидной цепи. Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

· ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

· ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

· водородные связи;

гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула сворачивается так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Стабильность третичной структуры зависит от системы нековалентных взаимодействий внутри белковой глобулы. Некоторые белки дополнительно стабилизируются ковалентными - дисульфидными связями; однако немало белков, в том числе достаточно стабильных, вовсе их лишены. Среди нековалентных взаимодействий, реализующихся при образовании пространственной структуры белка, наибольшую точность в фиксировании межатомных расстояний и углов обеспечивают водородные связи.

Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.


Виды объемных взаимодействий в молекуле белка: водородные связи, физическая природа водородных связей; силы Ван-дер-Ваальса; электростатические взаимодействия; гидрофобные взаимодействия в биоструктурах

В нуклеиновых кислотах и белках водородная связь в значительной мере определяет свойства и таких биологически важных веществ, как белки и нуклеиновые кислоты. В частности, элементы вторичной структуры (например, α-спирали, β-складки) и третичной структуры в молекулах белков, РНК и ДНК стабилизированы водородными связями. В этих макромолекулах, водородные связи сцепляют части той же самой макромолекулы, заставляя её сворачиваться в определенную форму. Например, двойная спиральная структура ДНК, определяется в значительной степени наличием водородных связей, сцепляющих пары нуклеотидов, которые связывают одну комплементарную нить с другой.

Ван-дер-ваальсовы силы — силы межмолекулярного (и межатомного) взаимодействия с энергией 10 — 20 кДж/моль, применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Я. Д. ван дер Ваальсом в 1869 году. Ван-дер-Ваальсовы силы межатомного взаимодействия инертных газов обусловливают возможность существования агрегатных состояний инертных газов (газ, жидкость и твёрдые тела). К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными).

Классификация ван-дер-ваальсовых сил Ван-дер-ваальсовое взаимодействие состоит из трех типов слабых взаимодействий:

· Ориентационные силы, диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твердом состоянии. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

· Дисперсионное притяжение (лондоновские силы). Взаимодействием между мгновенным и наведенным диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

· Индукционное притяжение. Взаимодействие между постоянным диполем и наведенным (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.


Электростатические взаимодействия

реализуются в белках как между разно-, так и одноименно заряженными группами. Наиболее важны так называемые солевые мостики, которые возникают между положительно и отрицательно заряженными группами белка.

Данные взаимодействия подчиняются закону Кулона. Свободная энергия образования солевых мостиков зависит от среды, в которой они локализованы. Во внутренней неполярной области белка данная величина составляет порядка –5 ккал/моль (сравните со значением для ковалентной пептидной связи), а в приповерхностных слоях белка – в 10-20 раз меньше.

В образовании третичной структуры участвуют также ионные взаимодействия противоположно заряженных групп NН3+ и СОО- и гидрофобные взаимодействия, т.е. стремление молекулы белка свернуться так, чтобы гидрофобные углеводородные остатки оказались внутри структуры.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 658; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.143.118 (0.006 с.)