Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Молекулярные механизмы процессов энергетического сопряжения - хемиосмотическая теория МитчелаСодержание книги
Поиск на нашем сайте
Читатель наверняка обратил внимание на то, что при рассмотрении окислительно-восстановительных реакций (собственно обмен электронами) в уравнениях, описывающих эти реакции, постоянно фигурировала другая заряженная частица - ион водорода, протон (Н+). Этот знаменательный факт, как оказалось, имеет принципиальное значение для понимания сопряжения между окислительно-восстановительными реакциями и запасанием освобождающейся при этом энергии. На возможность создавать высокие концентрации ионов Н+ в клетках при протекании реакции окисления впервые, по-видимому, обратили внимание в 50-х годах Р. Дэвис (R. Davies), А. Огстон (A. Ogston) и Ю. Конвей (E. Konway) при обсуждении вопроса о механизме секреции кислоты клетками желудка. Если представить себе, что реакции, о которых шла речь, протекают так, что электроны удаляются из раствора, окисление любой органической молекулы приведет к появлению в этом растворе ионов водорода (рН раствора понизится, повысится кислотность раствора). П. Митчелл в 1961 году предложил идею хемиосмотического энергетического сопряжения в дыхательной цепи. Пожалуй, наиболее существенны для понимания принципа хемиосмотического сопряжения следующие положения. 1. Внутренняя мембрана митохондрий, где происходят окислительно-восстановительные реакции дыхания, непроницаема для ионов водорода (Н+) (точнее, протон диффундирует через двойной фосфолипидный слой очень медленно по сравнению со скоростью потребления кислорода). В то же время мембраны хорошо проницаемы для воды и благодаря электролитической диссоциации Н2О Н+ + + ОН- запас протонов в водных растворах неограничен. 2. Внутренняя мембрана митохондрий асимметрична: одни компоненты дыхательной цепи контактируют с матриксом (например, активный центр комплекса I), другие расположены внутри мембраны (например, убихинон), третьи контактируют с межмембранным пространством (например, цитохром с). 3. Разрушение мембраны не препятствует окислению NADH кислородом, а даже ускоряет дыхание. Энергетическое сопряжение (синтез АТФ) при этом полностью прекращается: происходит разобщение процессов переноса электронов и запасания энергии. Для разобщения необязательно полностью разрушать мембрану - достаточно, сохраняя ее структуру, добавить вещества, резко повышающие проницаемость мембраны для протона. Для того чтобы понять принцип хемиосмотического сопряжения, предложенный Митчеллом, воспользуемся рассмотрением химического генератора электричества, применяющегося в технике. Представим себе сосуд, разделенный перегородкой, проницаемой для воды и непроницаемой для каких бы то ни было ионов. В перегородку вмонтирован проводник электричества - металл (М), торцовые поверхности которого, обращенные одна в левый, а другая в правый отсек сосуда, покрыты каким-нибудь химическим катализатором (мелко диспергированная платина, никель). Осуществим теперь подачу к левой поверхности металлического проводника водорода (Н2), а к правой кислорода (О2). Ситуация аналогична той, которая создается в гремучем газе (смеси кислорода и водорода), однако между реагирующими молекулами возможен только электронный контакт (за счет металлического проводника). В результате теплового движения и действия катализатора на левой поверхности проводника будет происходить реакция Н2 2Н+ + + Протоны (2Н+) останутся в растворе (перегородка непроницаема для ионов). Электроны отправятся по проводнику к правой поверхности, где при встрече с активированным на правой поверхности кислородом произойдет реакция Суммарный процесс такого контролируемого окисления водорода кислородом (образование воды) приведет к тому, что перегородка окажется электрически заряженной (два отрицательных заряда слева перенесены направо) и возникнет разница концентраций ионов водорода в обоих отсеках ячейки: слева появится кислота (Н+), а справа - щелочь (ОН-) Первый член правой части равенства, описывающего энергетический баланс реакции (DY), - электрическая составляющая запасенной энергии, второй - осмотическая. Очевидно, что, после того как перегородка зарядится (слева +, справа -), процесс прекратится - электроны не побегут по проводнику против электрического поля. Если заряд на перегородке снимать (подключить устройство, потребляющее электрическую энергию, например лампочку), то окисление продолжится, а горение лампочки будет сопровождаться накоплением кислоты слева и щелочи справа. Можно расходовать запасенную энергию и по-другому: устроить в перегородке каналы для протонов. В этом случае за счет тока протонов слева направо также можно будет совершать работу. Именно так (за счет тока протонов) устроена молекулярная машина, синтезирующая АТФ. Повтиримся: поскольку H+ — химические частицы, несущие положительный заряд, неравномерное их накопление по обе стороны мембраны приводит к возникновению не только химического (концентрационного) градиента этих частиц, но и ориентированного поперек мембраны электрического поля (суммарный положительный заряд, где происходит накопление H+, и отрицательный заряд по другую сторону мембраны). Таким образом, при переносе электронов на ЦПМ возникает трансмембранный электрохимический градиент ионов водорода, обозначаемый символом DmH+, и измеряемый в вольтах (В, мВ), который состоит из электрического (трансмембранная разность электрических потенциалов Dy) и химического (концентрационного) компонентов (градиент концентраций H+ — D pH). Измерения показали, что на сопрягающих мембранах прокариот при работе дыхательных и фотосинтетических электронтранспортных цепей DmH+ достигает 200–250 мВ, при этом вклад каждого компонента непостоянен. Он зависит от физиологических особенностей организма и условий его культивирования. Итак, в соответствии с хемиосмотической теорией П. Митчелла, энергия, освобождаемая в результате работы; электронтранспортной цепи, первоначально накапливается в форме трансмембранного градиента ионов водорода. Разрядка образующегося DmH+ происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса: Н+ возвращаются по градиенту DmH+ через Н+–АТФ-синтазу, при этом без возникновения каких-либо промежуточных высокоэнергетических соединений из АДФ и неорганического фосфата образуется АТФ (рис. 1).
(Сами сопрягающие мембраны в интактном состоянии непроницаемы для ионов, особенно Н+ и ОН–.) Предположительно, для синтеза одной молекулы АТФ достаточен перенос двух протонов, т. е. Н+/АТФ=2. Однако не исключено, что Н+/АТФ может быть больше. Локализованная в мембране H+–АТФ-синтаза катализирует реакции синтеза и гидролиза АТФ в соответствии с уравнением:
АДФ + ФН + n HНАР+ «АТФ + H2O + n HВНУТР+
Реакция, протекающая слева направо, сопряжена с транспортом H+ по градиенту DmH+, что приводит к его разрядке и синтезу АТФ. Протекающая в противоположном направлении реакция гидролиза АТФ, сопровождающаяся переносом Н+ против градиента, приводит к образованию (или возрастанию) DmH+ на мембране. Таким образом, АТФ-синтазный ферментный комплекс служит механизмом, обеспечивающим взаимное превращение двух форм клеточной энергии (DmH+ «АТФ), устройством, сопрягающим процессы окислительной природы с фосфорилированием.
КОМПОНЕНТЫ ДЫХАТЕЛЬНОЙ ЦЕПИ - ТРАНСЛОКАТОРЫ ПРОТОНОВ Каждый из трех комплексов, составляющих дыхательную цепь, работает так, что перенос электронов по его компонентам - простетическим группам - сопровождается переносом протонов через сопрягающую мембрану. Возникает вопрос: как хемиосмотический принцип сопряжения реализован в белковых конструкциях комплексов дыхательной цепи? В принципе возможны два варианта таких конструкций. Первый, в качестве гипотезы предложенный П. Митчеллом получил название окислительно-восстановительной петли. Легко видеть, что этот механизм аналогичен тому, который мы рассмотрели применительно к топливному элементу. Роль металлического проводника выполняют простетические группы комплекса (Y1, Y2 и Y3), а поверхностей, покрытых катализатором, - его активные центры. Вся система организована в пространстве в виде петли, так что электроны дважды пересекают мембрану: один раз вместе с протонами, а другой - сами по себе. Отметим, что для возникновения по механизму петли необходимо, чтобы дыхательный комплекс имел в своем составе компоненты, способные переносить Н (см. верхнюю часть петли). Анализ качественного состава переносчиков электронов в комплексах, однако, показал, что это не всегда выполняется. Так, например, атомы железа при изменении валентности могут переносить электроны, но неспособны быть носителями протонов. В связи с этим, развивая идеи Митчелла, несколько исследовательских групп предложили вариант функционирования комплексов в качестве генераторов который можно назвать протонным насосом. В такой модели комбинация пар А, Х и В, Y фактически служит в качестве переносчиков атома Н. Для направленного переноса Н+ справа налево протонный насос, очевидно, должен быть снабжен клапанами, не позволяющими протону возвращаться назад в матрикс при окислении, например, группы Х. Принимая во внимание конформационную подвижность белков, сконструировать такой клапан достаточно легко. По-видимому, обе модели - петля и протонный насос - и их вариации реализуются при функционировании дыхательных комплексов.
МЕХАНИЗМ РАБОТЫ КОМПЛЕКСА III До сих пор мы обсуждали принципы устройства генераторов электричества в дыхательной цепи. Теперь можно рассмотреть работу одного из них более детально на конкретном примере комплекса III, механизм функционирования которого на сегодня изучен лучше всего. Донором электронов для этого комплекса служит восстановленный убихинон (QH2), а акцептором - цитохром с. Напомним, что убихинон служит переносчиком атомов водорода, а цитохром с, содержащий в качестве простетической группы атом железа в составе гема, может принимать и отдавать только электроны. Комплекс III представлен липопротеидом, состоящим из нескольких различных полипептидных цепей. В качестве переносчиков электронов комплекс содержит негемовые атомы железа (Fe-S), атом железа в составе гема цитохрома с1 и два атома железа в составе еще двух различных гемов b(I) и b(II). Активный центр цитохрома с1 расположен на внешней, обращенной в межмембранное пространство стороне внутренней мембраны митохондрий (там, где находится цитохром с).
|
|||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 953; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.87.151 (0.007 с.) |