Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Молекулярная подвижность липидов: сегментарная, вращательная, латеральная, флип-флоп переходы↑ ⇐ ПредыдущаяСтр 12 из 12 Содержание книги
Поиск на нашем сайте
сегментарная подвижность («флип-флоп»), в результате чего внутренние головки липидов оказываются на месте внешних Латеральную подвижность белковых (гликопротеидных) молекул плазматической мембраны можно наблюдать при изучении клеточных гибридов, имеющих разные поверхностные антигены, которые можно пометить. В этом случае в гибридной клетке антигены поверхностей сначала были разобщены, а через некоторое время они равномерно распределились по всей поверхности гетерокариона. .
Функции биомембран Барьерная функция биомембран Барьерная функция обеспечивает селективный, регулируемый, пассивный и активный обмен веществ клетки с окружающей средой (селективный - значит избирательный: одни вещества переносятся через биологические мембраны, другие нет); регулируемый - проницаемость мембраны для определенных веществ меняется в зависимости от функционального состояния клетки; активный - перенос от мест, где концентрация вещества мала, к местам с большей концентрацией. Матричная функция обеспечивает взаимное расположение и ориентацию мембранных белков, обеспечивает их оптимальное взаимодействие (например, взаимодействие мембранных ферментов).
Транспорт веществ через биомембраны Через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
Движущие силы мембранного транспорта Движущими силами пассивного переноса веществ через мембрану служат градиенты:
Классификация транспорта веществ через мембраны В клетке существует 4 основных вида транспорта: 1) Диффузия, 2) Осмос, 3) Активный транспорт, 4) эндо и экзоцитоз. 1) Диффузия — это перемещение веществ по диффузному градиенту, т.е. из области высокой концентрации, в область с низкой концентрацией. Медленно диффундируют ионы, глюкоза, аминокислоты, липиды и т.д. Быстро диффундируют жирорастворимые молекулы. Облегченная диффузия является модификацией диффузии. Наблюдается в том случае, когда определенному веществу помогает пройти через мембрану какая-либо специфическая молекула, т.е. у этой молекулы есть свой канал, через который она легко проходит (поступление глюкозы в эритроциты). 2) Осмос — это дифундированние воды через полупроницаемые мембраны. 3) Активный — это перенос молекул или ионов через мембрану, против градиента концентрации и электрохимического градиента. В клетке между двумя сторонами плазматической мембраны поддерживается разность потенциалов — мембранный потенциал. Внешняя среда положительный заряд, а внутренняя отрицательный. Поэтому в клетку будут стремится катионы Na, K, а анионы хлора будут отталкиваться. Примером активного транспорта имеющегося в большинстве клеток является натриево-калиевый насос. 4) Эндо и экзоцитоз. Плазматическая мембрана принимает учатие в выведении веществ из клетки, это происходит в процессе экзоцитоза. Так выводятся гормоны, полисахариды, белки, жировые капли и др. продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмолеме. Обе мембраны сливаются и содержимое пузырька выводится наружу. Фагоцтоз - захват и поглощение клеткой крупных частиц. Пиноцитоз — процесс захвата и поглощения капелек жидкости.
Механизмы пассивного мембранного транспорта Пассивный транспорт через мембрану происходит за счет концентрационного градиента для молекул неэлектролитов и за счет электрохимического градиента для ионов. Этот вид переноса веществ осуществляется путем простой и облегченной диффузии. Для ряда ионов облегченная диффузия реализуется в водных каналах, образуемых крупными молекулами белка. Облегченная диффузия может осуществляться подвижными переносчиками, которые переводят комплекс после взаимодействия с переносимыми молекулами или ионами в жирорастворимое состояние. Образовавшееся соединение проходит по градиенту концентрации на противоположную сторону мембраны, где происходит отщепление переносимой молекулы от переносчика и переход ее из липидной фазы в водную среду.
Уравнение Фика Пассивный перенос вещества вдоль оси х описывается уравнением Фика: Φ = –Ddc/dx, где Φ – поток вещества; D – коэффициент диффузии; dc/dx – градиент концентрации c в направлении x. Знак «-«означает, что поток направлен в сторону меньших значений концентрации, то есть приводит к уменьшению величины концентрационного градиента. Для расчетного описания переноса веществ через биологическую мембрану пользуются з а к о н о м Ф и к а д л я п а с с и в н о г о т р а н с п о р т а в е щ е с т в ч е р е з м е м б р а н у: Φ = –DK/l •(cвн-cвв) = –P(cвн-cвв), где Φ – плотность потока; D – коэффициент диффузии; К – коэффициент распределения вещества между мембраной и окружающей водной фазой; l – толщина мембраны; cвв – концентрация частиц внутри клетки; свн – концентрация частиц снаружи клетки; P – коэффициент проницаемости (см. тему 2). Иными словами, величина потока и скорость транспорта веществ через мембрану прямо пропорциональны коэффициенту распределения, который количественно отражает степень липофильности вещества. Чем больше значение коэффициента распределения, тем лучше вещество растворяется в мембране и с тем большей скоростью переносится через неё. Если рассматривать пассивный переход с позиций превращения энергии, то поток, проходящий через биологическую мембрану, равен: Φ = – uc (dG/dx), где u = D/RT - коэффициент пропорциональности, который зависит от скорости диффузии молекул и называется подвижностью. Таким образом, поток пропорционален концентрации вещества и градиенту термодинамического потенциала в направлении тока.
Электродиффузионное уравнение Нэрнста-Планка Рассматривая равновесные мембранные потенциалы мы выяснили, что условием термодинамического равновесия ионов является постоянство электрохимического потенциала во всем доступном для ионов пространстве. Отсюда следует, что движущей силой потока служит градиент электрохимического потенциала в среде.
Даже это положение в случае клеточных мембран может оказаться лишь некоторым приближением, поскольку оно требует выполнения условия электронейтральности (электрохимический потенциал должен быть определен в каждой точке), так и условие теплового равновесия (согласно теории Эйнштейна коэффициент диффузии D = uRT).
Первый член в первой части описывает только диффузию, второй – перемещение частиц в электрическом поле. Таким образом, дифференциальное уравнение электродиффузии Планка можно рассматривать как аналитическое выражение законов Фука и Ома одновременно.
Уравнение описывает плотность потока ионов j под действием диффузии и электрического поля, обычно его размерность ─моль на единицу поверхности за единицу времени.
Плотность электрического тока ─ умножить на, то есть на заряд переносимый каждым молем.
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 821; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.129.241 (0.008 с.) |