![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Арифметические операции над массивамиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Основные математические функции Напомним, что все данные в системе MATLAB – массивы. Все операции над массивами реализуются посредством функций. С каждой из традиционных операций (с умножением, делением и возведением в степень) связаны по две функции «*», «.*», «/», «./», «^», «.^». «Список этих функций приведен в табл. 3 см. в help MATLAB раздел «Arithmetic Operators.» а также. Л.1 стр. 27). Серым цветом выделены функции, которыми будем пользоваться по мере изучения соответствующих понятий в курсе линейной алгебры.
Ни правым «/», ни левым «\» делением в смысле матричного деления мы пользоваться непосредственно не будем. Операции над векторами Сложение и вычитание векторов. Поскольку числа в пакете MATLAB представляются в виде двумерного массива один на один, то при сложении векторов используется тот же знак плюс «+» - знак поэлементного сложения, что и для сложения чисел. Если размеры векторов, к которым применяется сложение или вычитание, не совпадают, то выдается сообщение об ошибке.
>> a1=[1 2] a1 = 1 2 >> a2=[1 2 3] a2 = 1 2 3 >> a1+a2 % результата не будет, так как матрицы a1 и a2 разной размерности ??? Error using ==> plus Matrix dimensions must agree. >> size(a1) ans = 1 2 >> size(a2) ans = 1 3
Упражнение 5. 1. Вычислите сумму массивов a = [1.2; 5.3; 6.4]; b = [7.83; 8.72; 9.61]; 2. Найдите разность b и a, результат запишите в c2 и выведите его в командное окно. Поэлементное умножение (операция «.*») и поэлементное возведение в степень (операция «.^»). 1. Операторам «*» и «.*» соответствуют встроенные в MATLAB в ядро функции mtimes() и times(). Первая функция выполняет матричное умножение входных параметров, а вторая их поэлементное умножение. При умножении вектора на скаляр обе функции вернут одинаковый результат. К матричному умножению мы обратимся в последующих модулях. Операция «.*» (не вставляйте пробел между точкой и звездочкой!) приводит к поэлементному умножению векторов одинаковой длины. В результате получается вектор с элементами, равными произведению соответствующих элементов исходных векторов: Введем две вектор–строки и перемножим их: >> u1=[2 -3 4 1]; u2 = [7 5 -6 9];u=u1.*u2 u = 14 -15 -24 9 Проверьте, использование оператора «*» приведет к сообщению об ошибке. 2. При помощи «.^» осуществляется поэлементное возведение в степень: >> p=u1.^2 p = 4 9 16 1 Проверьте, использование оператора «^» приведет к сообщению об ошибке.
Умножение и деление вектора на число. 1. Умножать вектор на число можно как справа, так и слева: >> p1=2*u, p2=u*2 p1 = 28 -30 -48 18 p2 = 28 -30 -48 18 Проверьте, к чему приведет использование оператора «.*» 2. Делить при помощи знака «/»вектор на число можно: >> v = p/2 v = 2.0000 4.5000 8.0000 0.5000 Проверьте, к чему приведет использование оператора «./» !!Попытка деления числа на вектор приводит к сообщению об ошибке: >> 2/p ??? Error using ==> mldivide Matrix dimensions must agree. Проверьте, к чему приведет использование оператора «2./v»
Операции над матрицами Умножение матрицы на число. Умножение матрицы A на число λ заключается в построении матрицы B, элементы которой получены путём умножения каждого элемента матрицы A на это число λ. Сложение матриц
Сложение матриц A и B есть операция нахождения матрицы C, все элементы которой равны попарной сумме всех соответствующих элементов матриц A и B. Комплексное сопряжение Если элементами матрицы являются комплексные числа, то комплексно сопряжённая матрица состоит из комплексно сопряженных чисел. Транспонирование матрицы При транспонировании матрицы строки становятся столбцами. Эрмитово сопряжение – комплексное сопряжение и транспонирование: Для матрицы, заданной действительными числами, не комплексными!, операция сопряжения и транспонирования совпадают)
>> A=[2,1] A = 2 1 >> A.' ans = >> A' ans = >> A=[1-i*2,1] A = 1.0000 - 2.0000i 1.0000 >> A' % 'эрмитово сопряжение, превратит строку в столбец и "сопряжет" комплексное число ans = 1.0000 + 2.0000i 1.0000 >> B=[1-i*2 1-i*3;1+i*4,1+i*5;2,3] B = 1.0000 - 2.0000i 1.0000 - 3.0000i 1.0000 + 4.0000i 1.0000 + 5.0000i 2.0000 3.0000 >> B.' ans = 1.0000 - 2.0000i 1.0000 + 4.0000i 2.0000 1.0000 - 3.0000i 1.0000 + 5.0000i 3.0000 >> B' ans = 1.0000 + 2.0000i 1.0000 - 4.0000i 2.0000 1.0000 + 3.0000i 1.0000 - 5.0000i 3.0000 Умножение матриц Умножение матриц A и B – есть операция вычисления матрицы C=AB, элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго. Количество столбцов в матрице A должно совпадать с количеством строк в матрице B. Если матрица A имеет размерность m x n, матрица B имеет размерность n x p, то размерность их произведения, матрицы C=AB, будет m x p. Операция матричного умножения «*» двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована. В частности, умножение всегда выполнимо, если оба сомножителя - квадратные матрицы одного и того же порядка. Следует заметить, что из существования произведения AB вовсе не следует существование произведения BA.
Упражнение 6. Выполнить в тетради + MATLAB. Для матриц A' % эрмитово сопряжение A.' % транспонирование B' % эрмитово сопряжение B.' % транспонирование % умножение на число: A1 = 2*A, A2=A*3, A3=4.*A, A4=A*.5 % сложение матриц: C1 = A+B, C2=A+D2, C3=B+D1, C4=A+E2, C5=B+C1 %умножение матриц: % что меняет умножение квадратной матрицы на единичную E? F1 = A*B, F2=B*A, F3=B' *A'б F4=E2*B, F5=A*E1, F=F1*F1*F1 F6=F1*E3, F7=E3*F1 % поэлементное умножение матриц: C = A.*D2 % возведение матрицы А в степень, (то же что и B=A*A, выполнимо только для квадратных матриц) A^2 % невыполнимо F1^2 % выполнимо A.^2 % возведение каждого элемента матрицы А в степень
|
|||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1661; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.118.144 (0.011 с.) |