Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лекция 2. Поступательное и вращательное движение твердого тела.

Поиск

Лекция 2. Поступательное и вращательное движение твердого тела.

В данной лекции рассматриваются следующие вопросы:

1. Степени свободы твердого тела.

2. Поступательное и вращательное движения твердого тела.

3. Поступательное движение.

4. Движение тела по окружности.

5. Вращательное движение твердого тела вокруг оси.

6. Угловая скорость и угловое ускорение.

7. Равномерное и равнопеременное вращения.

8. Скорости и ускорения точек вращающегося тела.

9. Вращение тела вокруг неподвижной точки.

Изучение данных вопросов необходимо в дальнейшем для динамики движения материальной точки, динамики относительного движения точки, динамики вращательного движения точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

 

 

Степени свободы твердого тела

Числом степеней свободы твердого тела называется число независимых параметров, которые однозначно определяют положение тела в пространстве относительно рассматриваемой системы отсчета. Движение твердого тела во многом зависит от числа его степеней свободы.

 

Рис.1

 

Рассмотрим пример. Если диск, не вращаясь, может скользить вдоль неподвижной в данной системе отсчета оси (рис.1, а), то в данной системе отсчета он, очевидно, обладает только одной степенью свободы - положение диска однозначно определяется, скажем, координатой x его центра, отсчитываемой вдоль оси. Но если диск, кроме того, может еще и вращаться (рис.1, б), то он приобретает еще одну степень свободы - к координате x добавляется угол поворота φ диска вокруг оси. Если ось с диском зажата в рамке, которая может поворачиваться вокруг вертикальной оси (рис.1, в), то число степеней свободы становится равным трем – к x и φ добавляется угол поворота рамки ϕ.

Свободная материальная точка в пространстве имеет три степени свободы: например декартовы координаты x, y и z. Координаты точки могут определяться также в цилиндрической (r, 𝜑, z) и сферической (r, 𝜑, 𝜙) системах отсчета, но число параметров, однозначно определяющих положение точки в пространстве всегда три.

Материальная точка на плоскости имеет две степени свободы. Если в плоскости выбрать систему координат xОy, то координаты x и y определяют положение точки на плоскости, акоордината z тождественно равна нулю.

Свободная материальная точка на поверхности любого вида имеет две степени свободы. Например: положение точки на поверхности Земли определяется двумя параметрами: широтой и долготой.

Материальная точка на кривой любого вида имеет одну степень свободы. Параметром, определяющим положение точки на кривой, может быть, например, расстояние вдоль кривой от начала отсчета.

Рассмотрим две материальные точки в пространстве, соединенные жестким стержнем длины l (рис.2). Положение каждой точки определяется тремя параметрами, но на них наложена связь.

Рис.2

 

Уравнение l 2=(x2-x1)2+(y2-y1)2+(z2-z1)2 является уравнением связи. Из этого уравнения любая одна координата может быть выражена через остальные пять координат (пять независимых параметров). Поэтому эти две точки имеют (2∙3-1=5) пять степеней свободы.

Рассмотрим три материальные точки в пространстве, не лежащие на одной прямой, соединенные тремя жесткими стержнями. Число степеней свободы этих точек равно (3∙3-3=6) шести.

Свободное твёрдое тело в общем случае имеет 6 степеней свободы. Действительно, положение тела в пространстве относительно какой-либо системы отсчета, определяется заданием трех его точек, не лежащие на одной прямой, и расстояния между точками в твердом теле остаются неизменными при любых его движениях. Согласно выше сказанному, число степеней свободы должно быть равно шести.

Поступательное и вращательное движения твердого тела.

Поступательное движение

В кинематике, как и в статистике, будем рассматривать все твердые тела как абсолютно твердые.

Абсолютно твердым телом называется материальное тело, геометрическая форма которого и размеры не изменяются ни при каких механических воздействиях со стороны других тел, а расстояние между любыми двумя его точками остается постоянным.

Кинематика твердого тела, также как и динамика твердого тела, является одним из наиболее трудных разделов курса теоретической механики.

Задачи кинематики твердого тела распадаются на две части:

1) задание движения и определение кинематических характеристик движения тела в целом;

2) определение кинематических характеристик движения отдельных точек тела.

Существует пять видов движения твердого тела:

1) поступательное движение;

2) вращение вокруг неподвижной оси;

3) плоское движение;

4) вращение вокруг неподвижной точки;

5) свободное движение.

Первые два называются простейшими движениями твердого тела.

Начнем с рассмотрения поступательного движения твердого тела.

Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.

Поступательное движение не следует смешивать с прямолиней­ным. При поступательном движении тела траектории его точек мо­гут быть любыми кривыми линиями. Приведем примеры.

1. Кузов автомобиля на прямом горизонтальном участке дороги движется поступательно. При этом траектории его точек будут пря­мыми линиями.

2. Спарник АВ (рис.3) при вращении кривошипов O1A и O2B также движется поступательно (любая проведенная в нем прямая остается параллельной ее начальному направлению). Точки спарника движутся при этом по окружностям.

Рис.3

 

Поступательно движутся педали велосипеда относительно его рамы во время движения, поршни в цилиндрах двигателя внутреннего сгорания относительно цилиндров, кабины колеса обозрения в парках (рис.4) относительно Земли.

Рис.4

 

Свойства поступательного движения определяются следующей теоремой: при поступательном движении все точки тела описывают одинаковые (при наложении совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению ско­рости и ускорения.

Для доказательства рассмотрим твердое тело, совершающее по­ступательное движение относительно системы отсчета Oxyz. Возьмем в теле две произвольные точки А и В, положения которых в момент времени t определяются радиусами-векторами и (рис.5).

Рис.5

Проведем вектор , соединяющий эти точки.

Тогда

При этом длина АВ постоянна, как расстояние между точками твердого тела, а направление АВ остается неизменным, так как тело движется поступательно. Таким образом, вектор АВ во все время движения тела остается постоянным (AB =const). Вследствие этого, траектория точки В получается из траектории точки А параллельным смещением всех ее точек на постоянный вектор . Следова­тельно, траектории точек А и В будут действительно одинаковыми (при наложении совпадающими) кривыми.

Для нахождения скоростей точек А и В продифференцируем обе части равенства по времени. Получим

Но производная от постоянного вектора АВ равна нулю. Про­изводные же от векторов и по времени дают скорости точек А и В. В результате находим, что

т.е. что скорости точек А и В тела в любой момент времени оди­наковы и по модулю, и по направлению. Беря от обеих частей полу­ченного равенства производные по времени:

Следовательно, ускорения точек А и В тела в любой момент времени тоже одинаковы по модулю и направлению.

Так как точки А и В были выбраны произвольно, то из найден­ных результатов следует, что у всех точек тела их траектории, а также скорости и ускоре­ния в любой момент времени будут одинаковы. Таким образом, теорема доказана.

Из теоремы следует, что поступательное движение твердого тела определяется движением какой-нибудь одной из его точки. Следовательно, изучение поступательного движения тела сводится к задаче кинематике точки, нами уже рассмотренной.

При поступательном движении общую для всех точек тела скорость называют скоростью поступательного движения тела, а ускорение - ускорением поступательного движения тела. Векторы и можно изображать приложенными в любой точке тела.

Заметим, что понятие о скорости и ускорении тела имеют смысл только при поступательном движении. Во всех остальных случаях точки тела, как мы увидим, движутся с разными скоростями и ускорениями, и термины <<скорость тела>> или <<ускорение тела>> для этих движений теряют смысл.

 

Рис.6

 

За время ∆t тело, двигаясь из точки А в точку В, совершает перемещение , равное хорде АВ, и проходит путь, равный длине дуги l.

Радиус-вектор поворачивается на угол ∆φ. Угол выражают в радианах.

Скорость движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью. Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени ∆t, за который эта дуга пройдена:

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью:

В СИ единицей угловой скорости является радиан в секунду .

При равномерном движении по окружности угловая скорость и модуль линейной скорости — величины постоянные: ω=const; v=const.

Положение тела можно определить, если известен модуль радиуса- вектора и угол φ, который он составляет с осью Ох (угловая координата). Если в начальный момент времени t0=0 угловая координата равна φ0, а в момент времени t она равна φ, то угол поворота ∆φ радиуса-вектора за время ∆t=t-t0 равен ∆φ=φ-φ0. Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности:

φ=φ0+ωt

Оно позволяет определить положение тела в любой момент времени t.

Учитывая, что , получаем:

— формула связи между линейнойи угловой скоростью.

Промежуток времени Т, в течение которого тело совершает один полный оборот, называется периодом вращения:

где N – число оборотов, совершенных телом за время Δt.

За время ∆t=Т тело проходит путь l =2πR. Следовательно,

Величина ϑ, обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения:

Следовательно,

.

 

Рис.7

 

По определению среднего ускорения . Треугольники ОАВ и ВСD — равнобедренные (рис. 7). Углы при вершинах — одинаковые (как углы с соответственно перпендикулярными сторонами). Отсюда следует, что ∆ОАВ подобен ΔВСD.

Из подобия

Тогда

Мгновенное ускорение

β — угол между и —внешний по отношению к ΔВСD:

При ∆t→0 угол ∆φ→0 и, следовательно, β→90°. Перпендикуляром к касательной к окружности является радиус. Следовательно, направлено по радиусу к центру и поэтому называется центростремительным ускорением:

Модуль , направление непрерывно изменяется (рис. 8). Поэтому данное движение не является равноускоренным.

Рис.8

 

Рис.9

Тогда поло­жение тела в любой момент времени одно­значно определится взятым с соответствую­щим знаком углом φ между этими полуплоскостями, который назо­вем углом поворота тела. Будем считать угол φ положительным, если он отложен от неподвижной плоскости в направлении против хода часовой стрелки (для наблюдателя, смотрящего с положительного конца оси Az), и отрицательным, если по ходу часовой стрелки. Измерять угол φ будем всегда в радианах. Чтобы знать положение тела в любой момент времени, надо знать зависимость угла φ от времени t, т.е.

φ=f(t).

Уравнение выражает закон вращательного движения твердого тела вокруг неподвижной оси.

При вращательном движении абсолютно твердого тела вокруг неподвижной оси углы поворота радиуса-вектора различных точек тела одинаковы.

Основными кинематическими характеристиками вращательного движения твердого тела являются его угловая скорость ω и угловое ускорение ε.

Если за промежуток времени ∆t=t1-t тело совершает поворот на угол ∆φ=φ1-φ, то численно средней угловой скоростью тела за этот промежуток времени будет . В пределе при ∆t→0 найдем, что

или ω= .

Таким образом, числовое значение угловой скорости тела в данный момент времени равно первой производной от угла поворота по времени. Знак ω определяет направление вращения тела. Легко видеть, что когда вращение происходит против хода часовой стрелки, ω>0, а когда по ходу часовой стрелки, то ω<0.

Размерность угловой скорости 1/Т (т.е. 1/время); в качестве единицы измерения обычно применяют рад/с или, что тоже, 1/с (с-1), так как радиан - величина безразмер­ная.

Угловую скорость тела можно изобразить в виде вектора , модуль которого равен | | и который направлен вдоль оси вращения тела в ту сторону, откуда вращение видно происходящим против хода часовой стрелки (рис.10). Такой вектор определяет сразу и модуль угло­вой скорости, и ось вращения, и направ­ление вращения вокруг этой оси.

Рис.10

 

Угол поворота и угловая скорость характеризуют движение всего абсолютно твердого тела в целом. Линейная скорость какой-либо точки абсолютно твердого тела пропорциональна расстоянию точки от оси вращения:

При равномерном вращении абсолютно твердого тела углы поворота тела за любые равные промежутки времени одинаковы, тангенциальные ускорения у различных точек тела отсутствуют, а нормальное ускорение точки тела зависит от ее расстояния до оси вращения:

Вектор направлен по радиусу траектории точки к оси вращения.

Угловое ускорение характеризует изменение с те­чением времени угловой скорости тела. Если за промежуток вре­мени ∆t=t1-t угловая скорость тела изменяется на величину ∆ω=ω1-ω, то числовое значение среднего углового ускорения тела за этот промежуток времени будет . В пределе при ∆t→0 найдем,

Таким образом, числовое значение углового ускорения, тела в данный момент времени равно первой производной от угловой скорости или второй производной от угла поворота тела по времени.

Размерность углового ускорения 1/T2 (1/время2); в качестве единицы измерения обычно применяется рад/с2 или, что то же, 1/с2 (с-2).

Если модуль угловой скорости со временем возрастает, вращение тела называется ускоренным, а если убывает, - замедленным. Легко видеть, что вращение будет ускоренным, когда величины ω и ε имеют одинаковые знаки, и замедленным, - когда разные.

Угловое ускорение тела (по аналогии с угловой скоростью) можно также изобразить в виде вектора ε, направленного вдоль оси вращения. При этом

Направление ε совпадает с направлением ω, когда тело вращается ускоренно и (рис.10,а), противоположно ω при замедленном вращении (рис.10,б).

 

Рис.11 Рис. 12

2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами

В нашем случае ρ=h. Подставляя значение v в выражения aτ и an, получим:

или окончательно:

Касательная составляющая ускорения aτ направлена по каса­тельной к траектории (в сторону движения при ускоренном вра­щении тела и в обратную сторону при, замедленном); нормальная составляющая an всегда направлена по радиусу МС к оси вращения (рис.12). Полное ускорение точки М будет

Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом μ, который вычисляется по формуле

Подставляя сюда зна­чения aτ и an, получаем

Так как ω и ε имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональ­ны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол μ с радиусами описываемых ими окруж­ностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.14.

 

Рис.13 Рис.14

 

3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и a, проведем из произвольной точки О оси АВ радиус-вектор точки М (рис. 13). Тогда h=r∙sinα и по формуле

Таким образом, модуль векторного произведения равен модулю скорости точки М. Направления векторов и v тоже совпадают (оба они перпендикулярны плоскости ОМВ) и размерно­сти их одинаковы. Следовательно, - формула Эйлера, т.е. вектор скорости любой точки вращающегося тела равен векторному произведению угловой скорости тела на радиус-вектор этой точки.

Пример 1. Маятник OM качается в вертикальной плоскости так, что φ=0,5sin2t. Длина OM= l =1м. (рис. 15).

Рис.15

 

Решение. Маятник вращается вокруг горизонтальной оси О, перпендикулярной вертикальной плоскости. Угловая скорость угловое ускорение

Например, при t=1 с, φ=0,5sin2=0,45 рад≅26°; ω=cos2=-0,42 c-1 (вращение по часовой стрелке); ε=-2sin2=-1,82 c-2 (угловое уско­рение направлено также по часовой стрелке). Вращение в этом положении ускоренное.

Скорость точки M: vM= l ω=1∙0,42=0,42 м∙с-1 (определя­ется модуль скорости). Направлен вектор скорости соответственно направлению угловой скорости – в сторону вращения.

.
Нормальное ускорение an= l ω2=1∙0,422=0,176 м∙с-2, касательное ускорение aτ= l ε=1∙1,82=1,82 м∙с-2. (Определён опять модуль вектора ускорения. Направлен вектор вниз, как указывает угловое ускорение).

Величина полного ускорения точки

 

Рис.16

 

Рис. 9.4.
Рис. 9.5.
Когда углы Эйлера равны нулю, под­вижные оси совпадают с непод­вижными. Чтобы опреде­лить положение тела, соот­ветст­вующее заданным углам Эйлера, производим следующие действия. Сначала подвижные оси, а значит и тело, поворачи­ваем на угол Ψ вокруг оси z. При этом оси x1 и y1 отойдут от осей x и y в гори­зон­тальной плоскости и ось x1 займёт по­ложение OK (рис.16). Затем тело вращаем вокруг но­вого поло­жения оси x1 (прямой OK) на угол θ. Ось z1 отойдёт от оси z на этот угол θ, а ось y1 приподнимется над горизонтальной плоскостью. Наконец, тело (и подвижные оси) вращаем вокруг нового положения оси z1 на угол φ. Ось x1 отойдёт от положения OK в на­клонной плоскости, перпендикуляр­ной оси z1. Это положение тела и будет соответствовать углам Эйлера (на рисунке само тело не пока­зано).

Линия пересечения неподвижной плоскости xOy и подвижной x1Oy1, прямая OK, называ­ется линией узлов. Угол Ψ называется углом прецессии, угол θ – углом нутации, угол φ – углом собственного вращения. Эти названия углов пришли из теории гироскопов.

При движении тела углы Эйлера изменя­ются по определённым законам Ψ=Ψ(t); θ=θ(t); φ=φ(t) которые называются уравнениями вра­щения.

На примере вращающегося волчка можно лучше разобраться в этих углах Эйлера (рис.17). Ось волчка z1 описывает конус вокруг неподвижной оси z. Это вращение определяется углом Ψ (говорят: волчок совершает прецессию). Отклонение оси волчка от вертикали – угол нутации θ.

А вращение волчка вокруг своей оси z1, определяемое углом φ – собственное вращение.

Рис.17

 

2) Теорема Даламбера – Эйлера. Мгновенная ось вращения.

Проведём в теле сферическую поверх­ность произвольного радиуса с центром в неподвижной точке O (рис.18).

Рис.18

 

По­кажем у тела какие-нибудь две точки A и B, расположенные на этой сфере. Со­единим их по сфере дугой наибольшего радиуса (кратчайшее расстояние между точками). Переместим тело в новое по­ло­жение. Точки, а значит и дуга, займут по­ложение A1 и B1. Соединим точки A и A1, B и B1 дугами большого радиуса AA1 и BB1. Посередине этих дуг прове­дём им перпендикулярные дуги и най­дём их точку пересечения P1. Соединим эту точку P1 с точками A, B, A1, B1. Получим два сфе­рических треугольника ∆ABP1 и ∆A1B1P1, расположенных на этой сфере. Эти два треугольника равны, как треугольники с равными сторонами (AB=A1B1, а AP1=A1P1 и BP1=B1P1 – как дуги равноудалённые от пер­пендикуляров). Так как эти два треугольника расположены на одной сфере и имеют общую вершину P1, то их можно совместить поворотом сферы, а значит и тела, вокруг прямой OP1.

Поэтому можно сделать вывод, что тело с одной неподвижной точкой можно переместить из одного положения в другое поворотом вокруг некоторой оси, проходящей через не­подвижную точку O. Это утверждение – есть теорема Даламбера-Эйлера.

Рис. 9.7.
Конечно, такое перемещение не яв­ля­ется истинным движением тела. На самом деле тело переходило из первого положе­ния в другое каким-то другим, наверное бо­лее сложным путём. Но, если время ∆t такого пере­хода мало, то это перемещение будет близко к действительному. А при ∆t→0можно предположить, что для данного момента времени тело поворачива­ется вокруг некоторой оси Р, проходя­щей через неподвижную точку O, вращаясь вокруг неё с угловой скоро­стью . Конечно, для каждого дру­гого момента времени эта ось рас­поло­жена иначе. Поэтому ось P называют мгновенной осью вращения, а угло­вую скорость мгновенной угловой скоростью, вектор которой на­прав­лен по оси.

Рис. 9.8.

3) Скорость точек тела.

По теореме Даламбера-Эйлера за малое время ∆t движение тела можно представить как вращение вокруг неподвижной оси OP1 с некоторой угловой скоростью (рис.19).

Рис.19

 

Тогда скорость точки M: В пределе, при ∆t→0, угловая скорость будет приближаться к мгновенной угловой скорости , направленной по мгновенной оси вращения P, а скорость точки - к истинному значению:

Но таким же образом находится скорость точки при вращении тела вокруг оси, по которой направлен вектор , в нашем случае – по мгновенной оси вращения P. Поэтому скорость точки можно определить как скорость её при вращении тела вокруг мгновенной оси P. Величина скорости v=h∙ω (рис.19).

Рис. 9.9.
Определение скоростей то­чек тела значительно упроща­ется, если извест­на мгновенная ось вращения P. Иногда её можно найти, если уда­стся обна­ружить у тела хотя бы ещё одну точку, кроме O, скорость кото­рой в данный момент равна нулю, и провести ось P из не­подвижной точки О через эту точку. Так как мгновенная ось вращения – геометрическое ме­сто точек, скорости которых равны нулю в данный момент времени.

Пример 2. Водило OA=a, вращаясь вокруг вертикальной оси z с угловой скоростью ω0, застав­ляет диск радиуса R кататься по горизон­тальной плоскости (рис.20).

Рис.20

 

Рис. 9.10.
Если представить диск как ос­нование конуса с вершиной в не­подвиж­ной точке O, то движение диска можно назвать вращением вокруг этой неподвижной точки O.

Так как скорость точки касания диска с плоскостью равна нулю, то мгновенная ось вращения P проходит через эту точку. И вектор мгновенной угловой скорости будет направлен по этой оси.

Точка A вместе с водилом OA вращается вокруг оси z. Поэтому её ско­рость vA=aω0 (рис.20). Эта скорость определяет направление вращения диска вокруг оси P и направление вектора . Величина угловой ско­рости (h – рас­стояние от A до оси P). Теперь можно найти скорость любой точки диска, рассматривая его движение как вращение вокруг оси P. Так, например, скорость точки B: vB=2h∙ω. Так как h=R∙cosα и , , то и vB=2aω0.

 

4) Ускорение точек тела.

Сначала определим угловое ускорение тела . При движении тела вектор угловой скорости изменяется и по величине, и по направлению. Точка, распо­ложен­ная на его конце будет двигаться по некоторой траектории со скоростью (рис.21).

Рис.21

 

Если рас­сматривать вектор как ра­диус-вектор этой точки, то .

Итак. Угловое ускорение тела можно опреде­лить как скорость точки, расположенной на конце вектора угловой скорости:

.

Этот результат называется теоремой Резаля.

Теперь обратимся к определению ускорения точек. Ускорение какой-либо точки M тела

есть сумма двух векторов.

Первый вектор . Модуль его a1=εr∙sinα1=ε∙h1, где h 1 – расстояние от точки M до вектора . Направлен он перпендику­лярно и . Но таким же способом определяет­ся касательное ускорение. Поэтому первую состав­ляющую ускорения определяют как ка­сательное ускорение, предпола­гая, что тело вращается вокруг оси, совпадающей с векто­ром . И обо­значается этот вектор ускорения так

.

Второй вектор Модуль его a2=ωv∙cosα2, но α2=90°, т.к. векторы и перпендикулярны друг другу.

Рис.22

 

Значит a2=ωv=ωh2ω=h2ω2, где h2 – расстояние от точки М до мгновенной оси P, до вектора .

Направлен вектор перпендикулярно и , т.е. так же как вектор нормального ускорения при вращении вокруг оси P, или вектора . Поэтому этот вектор ускорения и обозначают, соответственно, так:

Итак, ускорение точек тела, вращающегося вокруг неподвижной точки, определяется как сумма двух ускорений:

Этот результат называется теоремой Ривальса.

Заметим, что в общем случае векторы и не совпадают и угол между и не равен 90°, векторы не перпендикулярны друг другу, как это было при вращении тела вокруг неподвижной оси.

 

Пример 3. Продолжим исследование движения диска (пример 2). Модуль угловой скорости Значит вектор вместе с осью P, которая всегда проходит через точку касания диска с плоскостью, вращается вокруг оси z и описывает конус. Точка М на конце вектора движется по окружности радиуса r=ω∙cosα с угловой скоро­стью ω0. Поэтому угловое ускорение диска

Откладывается вектор из неподвижной точкиО. Направлен он, как скорость , перпендикулярно водилу OA, параллельно оси х (рис. 23).

Рис.23

 

Найдём ускорение точки В.

Ускорение . Направлен вектор перпендикулярно OB и расположен в плоскости zO1y.

Ускорение Вектор направлен по BC, перпендикулярно мгновенной оси P. Модуль вектора найдём с помощью проекций на оси x, y, z:

Значит

 

Пример 4. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса.

Дано: ω=20 рад/с, N=10 об.

Найти: ε-?

Решение. При равномерном вращательном движении имеют место следующие два уравнения: φ=φооt+εt2/2 и ω= ωо+εt. По условию ωо=0, тогда эти уравнения примут вид: φ=εt2/2 и ω = εt. Решая их и учитывая, что φ=2πN, получим окончательно ε=ω2/4πN=3,2 рад/с.

Пример 5. Колесо радиусом 10 см вращается с постоянным угловым ускорением 3,14 рад/с2 (рис.24). Найти для точек на ободе колеса к концу первой секунды после начала движения: 1) угловую скорость, 2) линейную скорость, 3) тангенциальное ускорение, 4) нормальное ускорение, 5) полное ускорение и 6) угол, составляемый направлением полного ускорения с радиусом колеса.

Дано: R= 0,1 м, ε=3,14 рад/с2

Найти: ω-? v -? aτ -? a -?

Рис.24

 

Решение. 1) При равнопеременном вращательном движении угловая скорость ω = ωо+εt. По условию ωо=0, тогда ω = εt, т.е. ω растет пропорционально времени. К концу первой секунды ω=3,14 рад/с.

2) Так как v=ωR, то линейная скорость также пропорционально времени. К концу первой секунды v = 3,14 м/с.

3) Тангенциальное ускорение a τ = 𝜀R не зависит от времени t. В нашем случае a τ = 0,314 м/с2.

4) Нормальное ускорение a n2R=ε2t2R, т.е. нормальное ускорение растет пропорционально квадрату времени: при t=1 c a n=0,986м/с2.

5) Полное ускорение растет со временем по закону: При t=1 c a =1,03 м/с2.

6) Имеем , где α - угол, составляемый направлением полного ускорения с радиусом колеса. В начальный момент времени, т.е. при t=0, a =a τ - полное ускорение направлено по касательной. При t=∞ a = a n (так как a τ



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 907; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.168.199 (0.011 с.)