ТОП 10:

Киниматика абсолютно твердого тела. Поступательное движение твердого тела.



Киниматика материальной точки. Системы отсчета. Два способа описания движения материальной точки. Скорость и ускорение произвольно движущейся м.т. как производные радиуса вектора (первый способ описания движения).

Материальная точка –модель реального тела размерами, которого в данных условиях можно пренебречь. При этом масса тела считается сосредоточенной в геометрической точке.

Система отсчета – система координат, жестко связанная с абсолютно твердым телом, снабженная часами и используемая для определения положения в пространстве тел или их частей в любые моменты времени. Иногда система отсчета называют хронометрированной системой координат.

Тело отсчета – абсолютно твердое тело, с которым жестко связана система координат. Обычно это инерциальная система отсчета.

Описать движение материальной точки, значит указать положение этой точки в любой момент времени.

I Векторный способ.

 

Положение м.т. задается радиус вектором проведенным из некоторой неподвижной точки О в выбранной С.О. в т.М

- основной закон описания движения материальной точки.

Если найти эту зависимость то можно сказать что описали движение материальной точки.

II Координатный способ

С выбранным телом отсчета жестко связывают определенную систему координат. Запишим проекции на оси декартовой системы координат радиус-вектора r(t).

Зная зависимость этих координат от времени (закон движения м.т.) можно найти положение точки в каждый момент времени, а так же ее скорость и ускорение.

 

Скорость – векторная величина, которая определяет как быстроту движения, так и его направление в данный момент времени. Первая производная перемещения по времени.

Вектором средней скорости называется отношение приращения радиус-вектора точки к промежутку времени. <υ>=Δr/Δt.

Мгновенная скорость – это векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=limΔt→0Δr/Δt.

Мгновенная скорость – векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=dr/dt.

Ускорение – это характеристика неравномерного движения; определяет быстроту изменения скорости по модулю и направлению. Вторая производная перемещения по времени.

Среднее ускорение неравномерного движения за промежуток времени – это векторная величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло. <a>=Δυ/Δt.

Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения. a=dυ/dt.

Тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории.) aτ=dυ/dt.

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории). an2/r.

Киниматика абсолютно твердого тела. Поступательное движение твердого тела.

Энергия кинетическая и потенциальная. Полная механическая энергия и закон ее сохранения. Примеры применения законов сохранения энергии.

Кинетическая энергия –та часть механической энергии, которая зависит от скорости движения частей системы.

Потенциальная энергия –это та часть механической энергии, которая зависит от временного расположения тел системы и характера взаимодействия между ними.

Отдельная материальная точка обладает тока кинетической энергией, потенциальная энергия может быть принадлежностью только системы тел.

Полная механическая энергия системы – это энергия механического движения и взаимодействия, т.е. сумма кинетической и потенциальной энергии.

Фундаментальным законом природы является общефизический закон сохранения энергии:В изолированной системе энергия может переходить из одной формы в другую, но ее количество остается постоянным. Энергия характеризует состояние системы, а закон ее сохранения относится к числу строгих законов.

Закон сохранения механической энергии является обобщением опытных фактов, он связан с однородностью времени. Энергию покоящейся как целую механическую систему обычно называют внутренней. Она обычно включает в себя кинетическую энергию движущихся частиц системы и потенциальную их взаимодействия. Энергия механической системы зависит от скорости движения и взаимного расположения частей системы.

Е = Ек + Ер

Киниматика материальной точки. Системы отсчета. Два способа описания движения материальной точки. Скорость и ускорение произвольно движущейся м.т. как производные радиуса вектора (первый способ описания движения).

Материальная точка –модель реального тела размерами, которого в данных условиях можно пренебречь. При этом масса тела считается сосредоточенной в геометрической точке.

Система отсчета – система координат, жестко связанная с абсолютно твердым телом, снабженная часами и используемая для определения положения в пространстве тел или их частей в любые моменты времени. Иногда система отсчета называют хронометрированной системой координат.

Тело отсчета – абсолютно твердое тело, с которым жестко связана система координат. Обычно это инерциальная система отсчета.

Описать движение материальной точки, значит указать положение этой точки в любой момент времени.

I Векторный способ.

 

Положение м.т. задается радиус вектором проведенным из некоторой неподвижной точки О в выбранной С.О. в т.М

- основной закон описания движения материальной точки.

Если найти эту зависимость то можно сказать что описали движение материальной точки.

II Координатный способ

С выбранным телом отсчета жестко связывают определенную систему координат. Запишим проекции на оси декартовой системы координат радиус-вектора r(t).

Зная зависимость этих координат от времени (закон движения м.т.) можно найти положение точки в каждый момент времени, а так же ее скорость и ускорение.

 

Скорость – векторная величина, которая определяет как быстроту движения, так и его направление в данный момент времени. Первая производная перемещения по времени.

Вектором средней скорости называется отношение приращения радиус-вектора точки к промежутку времени. <υ>=Δr/Δt.

Мгновенная скорость – это векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=limΔt→0Δr/Δt.

Мгновенная скорость – векторная величина, определяемая производной радиус-вектора движущейся точки по времени. υ=dr/dt.

Ускорение – это характеристика неравномерного движения; определяет быстроту изменения скорости по модулю и направлению. Вторая производная перемещения по времени.

Среднее ускорение неравномерного движения за промежуток времени – это векторная величина, равная отношению изменения скорости к промежутку времени, за которое это изменение произошло. <a>=Δυ/Δt.

Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения. a=dυ/dt.

Тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории.) aτ=dυ/dt.

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению (направлена к центру кривизны траектории). an2/r.

Киниматика абсолютно твердого тела. Поступательное движение твердого тела.







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.222.93 (0.015 с.)