Известном ансамбле сигналов (когерентный прием)



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Известном ансамбле сигналов (когерентный прием)



 

Постановка и решение задачи когерентного приема

На корреляторах

Постановка задачи:

Известны:

1. Ансамбль сигналов на выходе модулятора

{si(t)}; i = 1, 2,…, m; t Î (0, T).

2. Непрерывный канал

,

где N(t) – квазибелый нормальный шум, т. е.

.

3. В качестве критерия качества приема задан критерий максимального правдоподобия (6.6)

 

Требуетсясинтезировать оптимальный демодулятор, иначе говоря, найти алгоритм оптимальной обработки входного сигнала и принятия решения о передаваемом сообщении.

Решение

В основу решения положим выражение заданного критерия качества приема, для чего рассмотрим входящие в него функции правдоподобия гипотез:

1) о наличии во входном колебании z(t) i-го сигнала [z(t) = si(t) + n(t)]

,

2) об отсутствии в нем какого-либо сигнала [z(t) = n(t)]

,

где .

Начнем с последней. Учитывая, что сечения квазибелого шума, разделенные интервалами , не коррелированны, а в силу нормального распределения шума и независимы, получим

.

Поскольку СП Z(t) = si(t)+ N(t) отличается от шума N(t) только известным, а потому неслучайным сигналом si(t), играющим роль математического ожидания Z(t), то

,

где использовано обозначение si,k = si(tk).

В итоге отношение правдоподобия гипотез о наличии и отсутствии сигнала принимает вид

или с учетом

.

Перейдем к белому шуму, сняв ограничение на ширину его спектра (F ® ¥). Иначе говоря, от евклидова пространства перейдем к гильбертовому. При этом

и

. (6.10)

Синтезируемый демодулятор должен принимать решение в пользу , обеспечивающего максимум выражения (6.10), или, что эквивалентно, максимум показателя экспоненты в нем

. (6.11)

Нетрудно видеть, что максимум (6.11) достигается при минимуме вычитаемого

. (6.12)

Демодулятор оптимальный по критерию максимального правдоподобия принимает решение в пользу того символа , сигнал si(t) которого отстоит от принятого колебания z(t) на меньшее расстояние.

 
 

Рассматривая выражение (6.12) как алгоритм обработки принятого колебания z(t) приходим к схеме демодулятора, представленной на рис. 6.2.

 

Другую форму алгоритма можно получить из выражения (6.11)

,

или

, (6.13)

где Ei – энергия i-го сигнала.

 
 

Схема оптимального демодулятора, реализующего алгоритм (6.13), приведена на рис. 6.3. Поскольку в каждой ветви такого демодулятора присутствует вычислитель скалярного произведения – коррелятор, то его называют демодулятором на корреляторах (активных фильтрах).

 
 

Если использовать сигналы равных энергий, то алгоритм (6.13) и схема демодулятора (рис. 6.3) существенно упрощаются (рис. 6.4)

. (6.14)

Все вышерассмотренные демодуляторы используют всю информацию о форме сигналов si(t), включая начальную фазу. В каждой их ветви содержатся генераторы, генерирующие синфазные образцы этих сигналов, поэтому их называют когерентными демодуляторами.

 

Синтез оптимального когерентного демодулятора

На согласованных фильтрах

 

Сохраняя постановку задачи синтеза демодулятора из предыдущего раздела и опираясь на алгоритмы (6.13) и (6.14), попробуем заменить коррелятор (активный фильтр), вычисляющий скалярные произведения приходящего колебания и образцов сигналов, на пассивный линейный фильтр, реализующий ту же операцию.

Как известно, реакция линейного фильтра на воздействие z(t) вычисляется с помощью интеграла Дюамеля

Потребуем, чтобы в заранее выбранный момент времени t0 значение этой реакции y(t0) с точностью до коэффициента совпало со скалярным произведением (6.14)

.

Как видно, это достигается при и t0T . После замены переменных получаем

. (6.15)

Фильтры, обладающие такими импульсными характеристиками, называют согласованными (СФ) с соответствующими сигналами.

На рис. 6.5 изображены сигнал длительностью Т и импульсные характеристики согласованных с ним фильтров для t0 = Т и t0 > Т, из которых видно, что импульсная характеристика согласованного фильтра является «зеркальным отражением» сигнала относительно момента времени 0,5t0.

Таким образом, фильтры с импульсными характеристиками (6.15) вполне могут заменить корреляторы в ветвях оптимального демодулятора (рис. 6.3 и 6.4), если решения принимать по отсчетам их реакции yi(kT) (рис. 6.6).



Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.192.254.246 (0.021 с.)