Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследований случайных процессовСодержание книги
Поиск на нашем сайте
Для закрепления полученных при изучении раздела 4 знаний на базе виртуальной лаборатории можно провести экспериментальные исследования случайных процессов используя: · осциллограф – для наблюдения реализаций СП во временной области, · анализатор спектра – для наблюдения реализаций СП в частотной области, · анализатор уровней – для наблюдения плотности вероятности, · коррелометр – для наблюдения корреляционных функций. Целесообразно работать в рамках конфигурации лабораторного стола по темам работ №2 и №19. Источником СП с равномерным и нормальным распределением может служить генератор сигнала (в режиме генератора шума) (рис. 4.9) и соответствующие подпункты меню «Сигналы» (рис. 4.10). Рекомендуется выполнить лабораторную работу №19 в полном объеме (рис. 4.10). Обратите внимание на связь размеров «шумовой дорожки» на экране осциллографа с эффективным значением шума и на связь корреляционных характеристик с энергетическими спектрами случайных процессов.
Прохождение случайных процессов через Преобразователи сигналов
Прохождение случайных процессов Через безынерционные цепи
Безынерционная цепь (безынерционный функциональный узел –БФУ) полностью описывается функциональной зависимостью y = f (x), связывающей мгновенные значения воздействия x (t) и реакции y (t) в совпадающие моменты времени. В результате имеем дело с функциональным преобразованием случайного процесса Y (t) = f [ X (t)]. Для вычисления одномерной плотности вероятности реакции w (y) по известной плотности вероятности воздействия w (x) рассмотрим рис. 5.2, на котором изображены функциональная характеристика БФУ y = f (x), заданная плотность вероятности воздействия w (x) и искомая плотность вероятности реакции БФУ w (y). Учитывая, что при попадании случайной величины X в интервал (x, x+dx) случайная величина Y с вероятностью 1 попадает в соответствующий ему интервал (y, y+dy), можно написать следующее соотношение
из которого вытекает
где f -1(y) – обратная функция (x = x (y) = f -1(y)).
Примеры:
1. Линейное безынерционное преобразованиеy = f (x) = ax + b. Обратная функция
Таким образом, при линейном преобразовании случайной величины ее кривая плотности распределения смещается на величину b, а масштаб по координатным осям изменяется в |a| раз. 2. Кусочно-линейное преобразование y = f (x) (рис. 5.3). Задачу решим графически, определяя вид кривой wY (y) на отдельных интервалах оси у.
Из рассмотрения функциональной характеристики y = f (x) с очевидностью вытекает, что
а) при у < 0 и у > y 2 wY (y) = 0, т. к. значения реакции у не могут выйти за пределы уровней отсечки (у = 0) и насыщения (у = y 2,); б) при 0 < у < y 1 wY (y) = 0, т. к. в этот интервал (протяженностью y 1) значения реакции попадают при единственном значении воздействия x = x 1, вероятность которого wX (x 1) dx ® 0; в) при y 1 ≤ у < y 2 г) при у = 0 д) при у = у 2 3. Преобразование при неоднозначной обратной функции
На практике встречаются ситуации, когда обратная функциональная характеристика является многозначной (рис. 5. 4). Рассуждая аналогично тому, как это делали при выводе выражения (5.1), легко убедиться в том, что в этом случае для интервала
математическое ожидание
дисперсия
Функциональное преобразование двух случайных процессов Постановка задачи: Заданы два случайных процесса X 1(t) и X 2(t) с известной совместной плотностью вероятности их значений в совпадающие моменты времени w (x 1, x 2; t). С этими процессами связаны два других СП Y 1(t) и Y 2(t) известными функциональными зависимостями
Требуется определить w (у 1, у 2; t) – совместную плотность вероятности процессов Y 1(t) и Y 2(t) в совпадающие моменты времени. Решение: По аналогии с (5.1) можно написать следующее соотношение
где J – якобиан преобразования переменных x 1, x 2 в у 1, у 2
|
||||
|
Последнее изменение этой страницы: 2016-04-23; просмотров: 470; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.007 с.) |