Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Прохождения случайных процессов через различные ФУСодержание книги
Поиск на нашем сайте
Для закрепления знаний, полученных при изучении данного раздела рекомендуется выполнить в рамках виртуальной лаборатории работу № 20 «Прохождение случайных процессов через различные функциональные узлы» в полном объеме (рис. 5.11). Обратите внимание на характер распределения СП на выходах одностороннего и двустороннего ограничителей - реальное проявление d-функций в виде выбросов на гистограммах плотности вероятности распределения, соответствующих порогам ограничения. Убедитесь в нормализации СП с произвольными распределениями после их прохождения через ФНЧ и ПФ и в отсутствии нормализации после прохождения СП через ФВЧ (объясните почему?). 6. Оптимальный прием дискретных сообщений Постановка задачи Дано: 1. Источник дискретных сообщений. Это значит, что известен ансамбль передаваемых сообщений , где m – объем алфавита источника и их статистика (распределение вероятностей) . 2. Модулятор. Это значит, что известны правила преобразования каждого сообщения в непрерывный сигнал и длительность сигнала T bi ® si (t); i = 1, 2,…, m; t Î (0, T). 3. Непрерывный канал. Канал задается своей математической моделью, описывающей связь его реакции Z (t) с воздействием si (t) и канальными помехами N (t), например 4. Тактовая синхронизация осуществляется идеально. Вопросы синхронизации не рассматриваются в рамках курса ТЭС, поэтому здесь и в дальнейшем всегда будем считать, что границы между сигналами si (t) в приемнике определяются точно, иначе говоря, в нем осуществляется дискретизация времени функцией d(t-kT), при которой границы тактов совпадают с границами сигналов. Требуется: Определить правило решения (решающую схему) вида , т.е. указать, каким образом на основе анализа принятой реализации z (t) СП Z (t) на каждом интервале Т следует принимать решение о переданном символе bi (при j = i имеет место правильный прием, иначе (при j ≠ i) – ошибочный). Дадим геометрическую трактовку этой постановке задачи (рис. 6.1). Совокупность всех возможных реализаций z (t) образует пространство принимаемых колебаний (обычно бесконечномерное пространство Гильберта L 2(T)) в котором присутствуют m различных векторов передаваемых сигналов si (t) (i = 1, 2,…, m). Выбор правила решения таким образом сводится к разбиению этого пространства на m непересекающихся областей , каждая из которых соответствует принятию решения о передаче конкретного сообщения bi (сигналом si (t)). На рис. 6.1. показаны две ситуации: 1) конец вектора колебания попадает в область отведенную под решение о передаче сообщения bk сигналом sk (t), что соответствует правильному приему; 2) конец вектора колебания попадает в область , отведенную под решение о передаче сообщения bj сигналом sj (t), что соответствует ошибочному приему. Разные правила решения (разные приемные устройства) различаются способом разбиения пространства принимаемых колебаний на области . В этой связи возникает задача наилучшего разбиения, которое, очевидно, всегда существует в определенном смысле. Например, если сообщение bi передается чаще сообщения bj и важно, чтобы как можно меньше передаваемых символов принимались ошибочно, то следует область расширить за счет области . Наилучшее разбиение пространства принимаемых сигналов (оптимизация решающей схемы) может быть найдено на основе критерия качества приема, разработка которого требует отдельного рассмотрения на основе теории статистический решений. В такой постановке задача приема дискретных сообщений в канале с аддитивной, нормальной помехой была решена В.А. Котельниковым (1946 г.), заложившим основы теории потенциальной помехоустойчивости. Приемник, реализующий наилучшее разбиение пространства принимаемых сигналов по выбранному критерию качества приема, Котельников назвал идеальным, а достигаемую им помехоустойчивость, при которой обеспечивается максимум средней вероятности правильного приема при заданной модуляции, – потенциальной помехоустойчивостью. Мы будем в дальнейшем такой идеальный приемник называть оптимальным демодулятором, как это часто принято в современной теории связи. Теория потенциальной помехоустойчивости конструктивна, т.к. позволяет не только определить пределы достигаемой помехоустойчивости, но и указывает пути реализации соответствующих демодуляторов.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 340; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.142.113 (0.008 с.) |