Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Цитологическое исследование мазков, соскобов и отпечатков↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Традиционными методами, используемыми патологоанатомами для диагностики различных заболеваний, являются цитологическое исследование мазков, соскобов и отпечатков ткани из различных органов и морфологическое изучение замороженных или заключённых в парафин биоптатов органов и тканей. Цитологические исследования позволяют дать предварительный диагноз в течение 20—30 мин, они широко применяются в поликлинической и хирургической практике. Однако при цитологическом исследовании нарушаются взаимоотношения между различными клетками и внеклеточным матриксом. Кроме того, в цитологическом образце могут отсутствовать отдельные типы клеток. Поэтому цитологические данные часто носят предварительный характер, а окончательный диагноз ставят после морфологического исследования биоптата через 4—5 дней. Использование срезов, полученных из замороженной ткани (криостатных срезов), позволяет ускорить обработку материала до 1—2 ч, но за счёт ухудшения морфологической картины. В связи с этим исследование биопсийного материала, заключённого в парафин, остаётся основным подходом в патологоанатомической диагностике. Очень информативна иммуноцитохимия. Используя специфические AT и эффективные системы их визуализации, можно получить данные, определяющие выбор терапии заболевания и его прогноз. Особенно эффективно использование этих методик при диагностике опухолей, иммунных, аутоиммунных и воспалительных процессов. Авторадиография Близка к гастохимическим методам исследования авторадиография, основанная на выявлении в клетках и в субклеточных структурах в СМ или ЭМ локализации радиоактивных изотопов. Метод позволяет визуально оценить интенсивность метаболизма в клетках и во внутриклеточных структурах, а также в структурах различных микробных и вирусных возбудителей болезней. Авторадиография позволяет наблюдать динамику процессов метаболизма, так как α- и β-частицы используемых изотопов, локализуясь и перемещаясь в определённых структурах, оставляют след на фотоэмульсии, которой покрывают гистологический или ультратонкий срез ткани. МОЛЕКУЛЯРНО-БИОЛОГИЧЕСКИЕ МЕТОДЫ Бурное развитие и прогресс в области иммунологии, генетики, биотехнологии, клеточной и молекулярной биологии привели к дальнейшему совершенствованию методического арсенала патолога. В области цитологии появились цитологические центрифуги (цитоспины), позволяющие сконцентрировать клетки из различных биологических жидкостей и получить качественный клеточный монослой, пригодный для цитологического и иммуноцитологического исследований в минимальные сроки. Проточная цитофлюориметрия Важным достижением в области цитологии явилось использование проточной цитофлюориметрии. Проточный цитофлюориметр — прибор, позволяющий производить качественный и количественный анализы физических и биологических параметров клеток, фенотипирование лейкоцитов, ДНК-анализ. Прибор автоматически измеряет количество света из флюорохрома, связанного со специфическими AT (CD3, CD4, CD8, CD19 и т.д.) или определёнными веществами (например, этидиумом бромида — 4',6-диамидино-2-фенилиндолом [DAPI]), окрашивающими ДНК или РНК. Используя различные флюорохромы, можно получить многопараметровые данные из одного образца. Сигнал из каждой клетки собирается в течение нескольких микросекунд при прохождении клетки через лазерный пучок, обрабатывается компьютером и представляется на дисплее в виде количественных данных. Образцы, содержащие суспензию или мелкие агрегаты клеток, готовятся в течение 2—3 ч. Наиболее широко проточная цитофлюориметрия стала использоваться в цитологической практике после развития ультразвуковой диагностики и применения техники тонкоигольчатой аспирационной биопсии. В отличие от обычной биопсии, тонкоигольчатая аспирационная биопсия менее травматична, не требует специальной подготовки больного и стерильных условий. Из получаемого аспирационного материала готовят мазок для цитологического исследования и клеточную суспензию для проточной цитофлюориметрии. Недостатком тонкоигольчатой аспирационной биопсии является её меньшая информативность и невозможность получения суспензии клеток из солидных тканей для проточной цитофлюориметрии. Метод двойной или тройной метки Совершенствование систем визуализации флюоресцентных и ферментных меток позволило использовать несколько помеченных разными метками различных AT на одном препарате при иммуногистохимическом исследовании. Это метод двойной или тройной метки. Этот методический подход особенно важен при исследовании гетерогенной по составу ткани и позволяет выявить распределение различных популяций клеток при инфильтративном росте опухолей, развитии локального иммунного ответа и т.д. При определённых условиях одна и та же клетка может экспрессировать несколько Аг (коэкспрессия), выявляемых обычно на различных клетках. В таких случаях используют флюоресцентный микроскоп, изображение с которого передаётся в компьютер. Ещё более эффективно исследование таких препаратов с помощью конфокальной сканирующей лазерной микроскопии. Монохромный источник освещения (лазер) не даёт оптических искажений и позволяет сканировать клетки в срезе или мазке в одной плоскости на различной глубине. Специальная компьютерная программа позволяет совмещать изображения одних и тех же участков, содержащих клетки с различными флюорохромами, и анализировать распределение различных меток на клетках. При совпадении меток и наложении их друг на друга появляется псевдоцветное свечение жёлтого цвета. Гибридизация in situ В последнее десятилетие в патологии активно используют гибридизационную иммуногистохимию, или гибридизацию in situ. Эта техника, в отличие от описанных выше, способна продемонстрировать распределение специфических последовательностей ДНК или РНК в индивидуальных клетках на срезах ткани, в мазке, в культуре клеток, хромосомных препаратах. Гибридизация in situ способна определять 20—50 копий определённых последовательностей ДНК или РНК в одной клетке. Таким образом, этот метод позволяет судить о биосинтетической активности отдельных клеток при их прямой визуализации и широко используется в диагностике инфекционных заболеваний и неопластических процессов, включая онкогены, гены-супрессоры, ростовые факторы и факторы, регулирующие клеточный цикл. Например, эта техника используется для идентификации экспрессии РНК в опухолях эндокринной системы, негативных при иммуногистохимической окраске. Гибридизация in situ является также важным инструментом в мониторинге генной терапии, поскольку позволяет выявлять локализацию и распределение терапевтических генов, трансфецированных вирусными или плазмидными векторами в клетки или органы. Недостатком гибридизации in situ является её относительно низкая чувствительность. Этот недостаток с успехом компенсируется использованием полимеразной цепной реакции. Полимеразная цепная реакция Полимеразная цепная реакция (ПЦР) — метод, в основе которого лежит ферментное накопление специфических ДНК-последовательностей. В ПЦР используются олигонуклеотидные праймеры (короткие ДНК-последовательности), которые располагаются сбоку от цепи ДНК и тем самым определяют интересующую область в исследуемой ДНК. Процедура включает повторные серии циклов, каждый из которых состоит из шаблонной денатурации, отжига праймера и удлинения прай-мера термостабильной ДНК-полимеразой до создания экспоненциального накопления специфического фрагмента ДНК, конец которого определяется 5'-концом праймера. После 20 циклов количество копий возрастает в 106—108 раз. Для ПЦР, помимо ДНК, может быть в качестве стартового материала использована РНК. Эта процедура известна как ПЦР с обратной транскрипцией. При помощи обратной транскрипции происходит построение комплементарной ДНК, которая и определяется ПЦР. ПЦР является чрезвычайно чувствительным методом, способным увеличивать 1—2 копии генов до уровня, легко определяемого гель-электрофорезом или блот-гибридизацией по Э. Саузерну (англ. название метода — southern blotting). Эта повышенная чувствительность ПЦР часто способна давать ложноположительные результаты при контаминации образцов. Современная лабораторная техника максимально предотвращает подобное загрязнение. Наиболее важным правилом ПЦР является раздельное проведение пре- и пост-ПЦР этапов. Кроме того, каждая ПЦР включает негативный ПЦР-контроль В настоящее время ПЦР получила дальнейшее развитие в виде ПЦР в реальном времени, способной давать количественную оценку исследуемых нуклеиновых кислот. При проведении ПЦР требуется разрушение клеток и тканей для изоляции нуклеиновых кислот и перевода их в жидкую фазу. Следовательно, результаты ПЦР невозможно связать с конкретным гистологическим типом клетки, определить процент клеток, содержащих исследуемую последовательность. Молекулярная техника, объединившая высокую чувствительность ПЦР и клеточную локализацию последовательностей, выявляемых гибридизацией in situ, получила название ПЦР in situ. Часто эта техника используется для определения вирусных или провирусных последовательностей нуклеиновых кислот. Помимо этого, ПЦР in situ применяют для изучения эндогенных последовательностей ДНК, включая перестроение клеточных генов, хромосомные транслокации и картирование геномных последовательностей с небольшим числом копий в метафазных хромосомах. Однако эта техника не находит широкого применения из-за лёгкости получения псевдоположительного результата и необходимости проведения большого количества контролей, сложности интерпретации полученных результатов и их низкой воспроизводимости. Микродиссекция В связи с вышеизложенным, был предложен метод микродиссекции, позволяющий вырезать отдельные идентифицированные клетки или группы клеток с последующим их анализом с помощью обычной ПЦР. Первые шаги в этом направлении были сделаны путём вырезания бритвой или соскобов интересующих участков ткани на срезе под микроскопом. В дальнейшем стали использовать микроманипуляторы, позволяющие точно выделить отдельные скопления клеток. В обоих методах процесс микродиссекции очень долог и во многом зависит от мастерства оператора. В настоящее время для точной и воспроизводимой микродиссекции всё чаще используют лазеры. В ряде приборов применён принцип лазерной микропучковой микродиссекции, когда точно сфокусированным пучком ультрафиолетового лазера вырезают клетки или область, защищенную фотопигментом, предотвращающим разрушение ДНК в УФ-свете. В других приборах используют принцип лазерного захвата. Этот принцип основан на селективном прилипании выбранных клеток или фрагментов ткани к термопластической мембране, активированной пульсами низкоэнергетического инфракрасного лазера. Термопластическая мембрана, используемая для переноса выбранных клеток, имеет диаметр около 6 мм и располагается на дне оптически прозрачной крышки, которая закрывает 0,5 мл микроцентрифужную пробирку с раствором для экстракции ДНК или РНК. Морфология вырезанных клеток хорошо сохраняется и может быть документирована на всех стадиях процедуры. Поскольку микродиссекция с лазерным захватом не разрушает окружающие ткани, 2—3 участка, содержащие разнородные морфологические структуры (нормальные, пограничные и опухолевые клетки), могут быть взяты для анализа с одного препарата. В настоящее время микродиссекция с лазерным захватом широко используется для анализа генетических изменений ДНК, определения потери гетерозиготности в инвазивных опухолях. Таким образом, современный патолог обладает возможностью использовать значительный арсенал методов, начиная с рутинных и заканчивая молекулярно-биологическими, для диагностики цитологического и биопсийного материалов. Выбор тех или иных методов обусловливается видом материала (мазок, криостатный или парафиновый срез), особенностями его фиксации, гистоархитектурными особенностями ткани и конечными целями исследования.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 1048; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.210.36 (0.008 с.) |