Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Патологическая анатомия: введение в предмет, общие аспекты, методы исследования в патологии.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Аутопсия Вскрытие трупов (аутопсия) — один из наиболее старых методов морфологического исследования. С древних времён вскрытие (сначала отдельных органов, а затем и трупов) использовали для определения причин болезней и выявления тех изменений органов и тканей, которые возникают при заболевании и приводят больного к смерти. Именно вскрытие трупов умерших позволяет говорить о том, что представляет собой болезнь, какой морфологический субстрат соответствует нарушениям функций и клиническим проявлениям болезни в ее динамике, при выздоровлении, инвалидизации или смерти больного. По изменениям органов и тканей, обнаруженным при вскрытии, можно судить об эффективности тех или иных лечебных мероприятий, об индуцированном патоморфозе болезней, а также о врачебных ошибках и ятрогениях. Нередко лишь на вскрытии возникают подозрения на то или иное инфекционное заболевание, что позволяет провести соответствующие исследования совместно с инфекционистами, эпидемиологами, фтизиатрами и другими специалистами. Иногда во время вскрытия трупа обнаруживаются погрешности в оперативном вмешательстве или в проведённых манипуляциях, а также криминальные причины смерти. Наконец, именно результаты вскрытия, тщательное исследование всех изменений органов и систем умершего позволяют составить наиболее полное и объективное представление о том заболевании, которым страдал больной при жизни. Поэтому вскрытие обязательно предусматривает составление патологоанатомического диагноза, который строится по тем же принципам, что и клинический диагноз. Это позволяет сравнивать клинический и патологоанатомический диагнозы, констатировать их совпадение или расхождение и в последнем случае оценивать значение врачебной ошибки и искать вместе с клиницистами её причину. Тем самым вскрытие трупов умерших служит целям контроля лечебно-диагностической деятельности больницы или поликлиники и повышения квалификации врачебного персонала. Вместе с тем результаты аутопсии, зафиксированные в протоколе вскрытия, позволяют проводить анализ ведения больного в клинике в тех случаях, когда речь может идти о врачебных преступлениях, дают возможность вести научные исследования и разрабатывать статистические данные. По результатам патологоанатомических исследований медицинская статистика анализирует причины и характер смертности населения. В связи с указанным аутопсия не теряет своего значения и при широком использовании биопсийной диагностики заболеваний. Только вскрытие трупа позволяет увидеть и оценить Патологоанатомические вскрытия трупов производит врач-прозектор в патологоанатомическом отделении больницы. Иногда прозекторов называют патологоанатомами. Здесь нет принципиальных различий, но патологоанатомами официально являются преподаватели кафедр патологической анатомии и сотрудники соответствующих подразделений научно-исследовательских институтов. В управлениях и комитетах здравоохранения городского уровня, а также в министерствах здравоохранения областного, краевого и республиканского уровней имеется патологоанатомическая служба и должность главного патологоанатома. Результаты аутопсии во многом зависят от метода вскрытия трупа. Существует несколько методов, которые использует патологоанатом в зависимости от конкретной ситуации и условий, в которых производится аутопсия. Одним из первых специальный метод вскрытия предложил Рудольф фон Вирхов, извлекавший органы по отдельности. При этом, однако, нарушаются анатомические связи между органами, что в ряде случаев может привести прозектора к ошибке. Позднее А.И. Абрикосов предложил вести вскрытие, следуя топографическому расположению органов, которые при этом делятся на пять систем и извлекаются в пять приёмов. Недостатком метода является то, что он приводит к расчленению анатомо-физиологических систем на фрагменты. Иногда при этом приходится рассекать опухоль или оперированные органы. Наибольшее распространение в практике получил способ Г.В. Шора, при котором органы выделяют не поодиночке, а целым органокомплексом. При эвисцерации сохраняются естественные связи между органами, а также изменения в их топографии, возникшие в результате операции, определяются пределы прорастания опухоли и т.п. Использование метода вскрытия по Шору не препятствует применению специальных способов вскрытия отдельных систем организма (например, эндокринной). Особенности различных способов вскрытия трупов описаны в специальной литературе. Биопсия Биопсия — прижизненное взятие тканей, органов или взвеси клеток для микроскопического исследования с диагностической целью, а также для изучения динамики патологического процесса и влияния на него лечебных мероприятий. В зависимости от способа взятия материала выделяют инцизионную, пункционную, эндоскопическую и аспирационную биопсии. Инцизионная биопсия При инцизионной биопсии часть ткани из органа или целый орган иссекают хирургическим путём. Биоптат фиксируют в растворе формалина или другой фиксирующей жидкости, после чего проводят гистологическое исследование. Нередко характер патологического процесса (например, характер опухоли) необходимо установить во время операции. В этих случаях показана срочная биопсия. Ткань фиксируют быстро, обычно путём замораживания её в жидком азоте или с помощью углекислого газа. Затем из биоптата готовят гистологические срезы, окрашивают и исследуют под микроскопом с целью срочной диагностики. Это чрезвычайно важно для определения объёма оперативного вмешательства. Пункционная биопсия При пункционной биопсии столбик ткани из органа получают с помощью специальной иглы или троакара. Разновидностью пункционной биопсии является трепанобиопсия, при которой получают ткань костей или костного мозга с помощью специального инструмента — трепана. Эндоскопическая биопсия Благодаря развитию эндоскопических методов исследования появилась эндоскопическая биопсия. Особенно широкое распространение получила эндоскопическая биопсия желудка, кишечника и бронхов. Объём материала, полученного с помощью эндоскопа, очень мал, поэтому высокая степень верификации патологического процесса может быть обеспечена только при исследовании 4—6 биоптатов. Аспирационная биопсия Аспирационную биопсию применяют для исследования жидкого содержимого полых органов или аспирата, полученного из полостей тела с помощью специальных инструментов. С этой же целью изучают диализный раствор из бронхов, желудка, плевральной или брюшной полостей, из полости матки. Полученный материал подвергают в основном цитологическому исследованию. Подготовка материала Полученные тем или иным путём кусочки ткани для последующей световой микроскопии (СМ) обычно фиксируют в 10% нейтральном забуференном формалине. Для выявления отдельных компонентов клеток используют специальные фиксирующие жидкости — Буэна, Карнуа и др. Фиксированный материал режут на микротоме, после чего применяют обзорные окраски срезов или проводят различные гистохимические реакции. Для электронной микроскопии (ЭМ) существуют специальные методы приготовления биопсийного материала, который затем режут на ультратоме, добиваясь толщины среза в 30—50 нм. Биопсию применяют и в поликлинике, где широкое распространение получили инцизионные биопсии шейки матки, кожи, пункционные биопсии поверхностно расположенных опухолей, аспирационные биопсии содержимого полости матки, верхнечелюстных (гайморовых) пазух и некоторых других полостей. Биопсийный материал может быть получен и для ЭМ-изучения. Этот метод наиболее широко используют в онкологии. Иногда только исследование ультраструктуры клеток опухоли позволяет установить её гистогенез. Световая микроскопия СМ основывается на таких определяющих факторах, как разрешающая способность микроскопа, направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света — его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. Для СМ биологические объекты обычно окрашивают для выявления тех или иных их свойств. При этом ткани должны быть фиксированы, так как окраска выявляет определённые структуры только погибших клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает клеточные структуры. Тем не менее в СМ можно изучать и живые биологические объекты (витальная микроскопия). В этом случае применяют тёмнопольный конденсор. Фазово-контрастная микроскопия применяется для исследования живых и неокрашенных биологических объектов. Она основана на дифракции луча света в зависимости от особенностей объекта изучения, от которых зависит изменение длины и фазы световой волны. В патологии фазово-контрастная микроскопия находит применение при исследовании простейших, клеток растений и животных, при подсчёте и дифференцировке клеток костного мозга и периферической крови, при изучении клеток культуры тканей и др. Поляризационная микроскопия позволяет изучать биологические объекты в свете, образованном двумя лучами, поляризованными во взаимно перпендикулярных плоскостях, т.е. в поляризованном свете. Этого достигают с помощью плёнчатых поляроидов или призм Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении (или отражении) лучей света через различные и оптически разнородные структуры. В так называемых изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, а в анизотропных структурах скорость его распространения меняется в зависимости от направления света по продольной или поперечной оси объекта. Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях — отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и обладают положительным двойным лучепреломлением. Такими свойствами обладают миофибриллы, реснички мерцательного эпителия, коллагеновые волокна и др. Сопоставление характера лучепреломления поляризованного света и величины анизотропии объекта позволяет судить о молекулярной организации его структуры. Поляризационная микроскопия является одним из гистологических, а также цитологических методов исследования, способом микробиологической диагностики и др. Важно, что в поляризованном свете можно исследовать как окрашенные, так и неокрашенные и нефиксированные (нативные) срезы тканей. Люминесцентная микроскопия основана на свойстве многих веществ давать свечение — люминесценцию в УФ-лучах или в сине-фиолетовой части спектра света. Ряд биологических веществ, таких как простые белки, коферменты, некоторые витамины, лекарственные средства (ЛС) обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться при добавлении к ним специальных красителей — флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно, но могут избирательно окрашивать отдельные клеточные структуры или определённые химические соединения. На этом основано использование люминесцентной микроскопии в цитологических и гистохимических исследованиях. Иммунофлюоресценция в люминесцентном микроскопе позволяет выявлять различные Аг и их концентрацию в клетках, при этом возможна идентификация вирусов, определение AT и иммунных комплексов, гормонов, различных продуктов метаболизма и др.Люминесцентную микроскопию применяют для диагностики вирусных инфекций, с помощью вторичной люминесценции диагностируют злокачественные опухоли в гистологических и цитологических препаратах, определяют очаги ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей и т. д. Ультрафиолетовая и инфракрасная микроскопия основана на способности поглощения УФ- и инфракрасных лучей определённых длин волн некоторыми веществами, входящими в состав живых клеток, микроорганизмов или фиксированных, но не окрашенных тканей, прозрачных в видимом свете. Свойством поглощать УФ-лучи обладают высокомолекулярные соединения, такие как нуклеиновые кислоты, белки, ароматические аминокислоты (тирозин, триптофан, метилаланин), пуриновые и пиримидиновые основания и др. С помощью УФ-микроскопии изучают локализацию и количество таких веществ, а при исследовании живых объектов — их изменения в процессе жизнедеятельности. Инфракрасная микроскопия применяется в медицине преимущественно в нейроморфологии и офтальмологии. Для специальных целей в патологии используются и другие микроскопические методы — интерференционная, стереоскопическая микроскопия и др. Электронная микроскопия ЭМ применяют для изучения структуры клеток, микроорганизмов и вирусов на субклеточном и макромолекулярном уровнях. Значительную разрешающую способность ЭМ обеспечивает поток электронов, проходящих в вакууме через электромагнитные поля, создаваемые электромагнитными линзами. При трансмиссионной ЭМ электроны проходят через структуры исследуемого объекта, а при сканирующей ЭМ они отражаются от этих структур, отклоняясь под разными углами. В результате возникает изображение на люминесцирующем экране микроскопа. При трансмиссионной (просвечивающей) ЭМ получают плоскостное изображение внутриклеточных структур, при сканирующей — объёмное. Весьма полезно сочетание ЭМ с другими методами — авторадиографией, гистохимическими, иммунологическими методами. Возникает возможность наблюдать течение биохимических и иммунологических процессов в клетке в сочетании с изменениями внутриклеточных структур. ЭМ требует специальной химической или физической фиксации тканей. Для исследования берут в основном биопсийный материал. Может быть использован и секционный материал, но в максимально короткие сроки после смерти, обычно исчисляемые минутами. После фиксации ткани обезвоживают, заливают в эпоксидные смолы, режут стеклянными или алмазными ножами на ультратомах. При этом получают ультратонкие срезы тканей толщиной 30—50 нм. Их контрастируют, переносят на специальные металлические сетки и затем изучают в ЭМ. При ультратомировании препарата можно получить так называемые полутонкие срезы толщиной 1,5 мкм, которые после окраски метиленовым синим исследуют в СМ. Это позволяет получить представление о состоянии той ткани, клетки которой будут затем изучены в ЭМ. Метод может иметь и самостоятельное значение. В сканирующем (растровом) ЭМ исследуют поверхность биологических и небиологических объектов, напыляя в вакуумной камере на их поверхность электроноплотные вещества и изучая эти реплики, повторяющие контуры объекта исследования. Методы окрашивания Микроскопические методы используют в медицине в сочетании с гистологическими методами исследования клеток и тканей. Для этого, как правило, фиксированные тканевые срезы должны быть окрашены с целью выявления различных клеточных структур. Последние воспринимают красители в зависимости от их физико-химических свойств. Поэтому красители подразделяют на основные, кислые и нейтральные. Основные, или базофильные, красители являются красящими основаниями или их солями (гематоксилин, метиленовый синий, толуидиновый синий и др.). В цветовой гамме этих красителей преобладают оттенки синего цвета. Интенсивность окраски (базофилия) зависит от числа кислотных групп в структурах клетки, способных взаимодействовать с основными красителями. Кислые, или ацидофильные, красители — красящие кислоты или их соли, окрашивающие клеточные структуры в различные оттенки красного (эозин, эритрозин, Конго красный, оранж и др.). Нейтральные, красители содержат и базофильные, и ацидофильные вещества (например, смесь Романовского—Гимзы). Такие красители могут обладать способностью растворяться в определённых веществах, окрашивая их (судан III, шарлах и др.). Нередко для контрастирования структур клеток или тканей используют методы, основанные на способности этих тканей удерживать или восстанавливать соли тяжёлых металлов (серебра, золота, осмия, свинца и др.). Эти методы контрастирования называются импрегнацией, они используются как в СМ, так и в ЭМ. С помощью различных красителей в повседневной и научной практике применяют обзорные окраски для составления общего представления о состоянии исследуемой ткани (гематоксилин и эозин, азур-фукселин и др.), а также специальные окраски для выявления особенностей процессов, протекающих в тканях и клетках. Так, используют окраску Суданом III для выявления жировой дистрофии клеток, Конго красным — для определения отложений амилоида, импрегнацию серебром — для исследования нервной ткани и т.п. Живые и неокрашенные объекты исследуют с помощью специальных микроскопических методов, описанных выше. Гистохимические методы Гистохимические и гистоферментохимические методы позволяют проследить и оценить обмен веществ в тканях и клетках в норме и вусловиях патологии; избирательно оценить метаболизм белков, липидов, углеводов и других метаболитов, локализацию и активность ферментов и гормонов, проанализировать особенности окислительно-восстановительных процессов, протекающих в клетках и тканях в условиях патологии, при приспособлении и компенсации. Диапазон применения гистохимических методов в патологии необычайно широк. Для гистохимических исследований используют срезы свежезамороженных тканей, приготовленные в криостате, что позволяет сохранить прижизненную локализацию того или иного химического соединения. Гистохимические методы часто сочетают с другими методами СМ и ЭМ. Для количественной оценки результатов гистохимических реакций применяют гистофотометрию, цитофотометрию, микрофлюорометрию и др. Авторадиография Близка к гастохимическим методам исследования авторадиография, основанная на выявлении в клетках и в субклеточных структурах в СМ или ЭМ локализации радиоактивных изотопов. Метод позволяет визуально оценить интенсивность метаболизма в клетках и во внутриклеточных структурах, а также в структурах различных микробных и вирусных возбудителей болезней. Авторадиография позволяет наблюдать динамику процессов метаболизма, так как α- и β-частицы используемых изотопов, локализуясь и перемещаясь в определённых структурах, оставляют след на фотоэмульсии, которой покрывают гистологический или ультратонкий срез ткани. Проточная цитофлюориметрия Важным достижением в области цитологии явилось использование проточной цитофлюориметрии. Проточный цитофлюориметр — прибор, позволяющий производить качественный и количественный анализы физических и биологических параметров клеток, фенотипирование лейкоцитов, ДНК-анализ. Прибор автоматически измеряет количество света из флюорохрома, связанного со специфическими AT (CD3, CD4, CD8, CD19 и т.д.) или определёнными веществами (например, этидиумом бромида — 4',6-диамидино-2-фенилиндолом [DAPI]), окрашивающими ДНК или РНК. Используя различные флюорохромы, можно получить многопараметровые данные из одного образца. Сигнал из каждой клетки собирается в течение нескольких микросекунд при прохождении клетки через лазерный пучок, обрабатывается компьютером и представляется на дисплее в виде количественных данных. Образцы, содержащие суспензию или мелкие агрегаты клеток, готовятся в течение 2—3 ч. Наиболее широко проточная цитофлюориметрия стала использоваться в цитологической практике после развития ультразвуковой диагностики и применения техники тонкоигольчатой аспирационной биопсии. В отличие от обычной биопсии, тонкоигольчатая аспирационная биопсия менее травматична, не требует специальной подготовки больного и стерильных условий. Из получаемого аспирационного материала готовят мазок для цитологического исследования и клеточную суспензию для проточной цитофлюориметрии. Недостатком тонкоигольчатой аспирационной биопсии является её меньшая информативность и невозможность получения суспензии клеток из солидных тканей для проточной цитофлюориметрии. Полимеразная цепная реакция Полимеразная цепная реакция (ПЦР) — метод, в основе которого лежит ферментное накопление специфических ДНК-последовательностей. В ПЦР используются олигонуклеотидные праймеры (короткие ДНК-последовательности), которые располагаются сбоку от цепи ДНК и тем самым определяют интересующую область в исследуемой ДНК. Процедура включает повторные серии циклов, каждый из которых состоит из шаблонной денатурации, отжига праймера и удлинения прай-мера термостабильной ДНК-полимеразой до создания экспоненциального накопления специфического фрагмента ДНК, конец которого определяется 5'-концом праймера. После 20 циклов количество копий возрастает в 106—108 раз. Для ПЦР, помимо ДНК, может быть в качестве стартового материала использована РНК. Эта процедура известна как ПЦР с обратной транскрипцией. При помощи обратной транскрипции происходит построение комплементарной ДНК, которая и определяется ПЦР. ПЦР является чрезвычайно чувствительным методом, способным увеличивать 1—2 копии генов до уровня, легко определяемого гель-электрофорезом или блот-гибридизацией по Э. Саузерну (англ. название метода — southern blotting). Эта повышенная чувствительность ПЦР часто способна давать ложноположительные результаты при контаминации образцов. Современная лабораторная техника максимально предотвращает подобное загрязнение. Наиболее важным правилом ПЦР является раздельное проведение пре- и пост-ПЦР этапов. Кроме того, каждая ПЦР включает негативный ПЦР-контроль В настоящее время ПЦР получила дальнейшее развитие в виде ПЦР в реальном времени, способной давать количественную оценку исследуемых нуклеиновых кислот. При проведении ПЦР требуется разрушение клеток и тканей для изоляции нуклеиновых кислот и перевода их в жидкую фазу. Следовательно, результаты ПЦР невозможно связать с конкретным гистологическим типом клетки, определить процент клеток, содержащих исследуемую последовательность. Молекулярная техника, объединившая высокую чувствительность ПЦР и клеточную локализацию последовательностей, выявляемых гибридизацией in situ, получила название ПЦР in situ. Часто эта техника используется для определения вирусных или провирусных последовательностей нуклеиновых кислот. Помимо этого, ПЦР in situ применяют для изучения эндогенных последовательностей ДНК, включая перестроение клеточных генов, хромосомные транслокации и картирование геномных последовательностей с небольшим числом копий в метафазных хромосомах. Однако эта техника не находит широкого применения из-за лёгкости получения псевдоположительного результата и необходимости проведения большого количества контролей, сложности интерпретации полученных результатов и их низкой воспроизводимости. Микродиссекция В связи с вышеизложенным, был предложен метод микродиссекции, позволяющий вырезать отдельные идентифицированные клетки или группы клеток с последующим их анализом с помощью обычной ПЦР. Первые шаги в этом направлении были сделаны путём вырезания бритвой или соскобов интересующих участков ткани на срезе под микроскопом. В дальнейшем стали использовать микроманипуляторы, позволяющие точно выделить отдельные скопления клеток. В обоих методах процесс микродиссекции очень долог и во многом зависит от мастерства оператора. В настоящее время для точной и воспроизводимой микродиссекции всё чаще используют лазеры. В ряде приборов применён принцип лазерной микропучковой микродиссекции, когда точно сфокусированным пучком ультрафиолетового лазера вырезают клетки или область, защищенную фотопигментом, предотвращающим разрушение ДНК в УФ-свете. В других приборах используют принцип лазерного захвата. Этот принцип основан на селективном прилипании выбранных клеток или фрагментов ткани к термопластической мембране, активированной пульсами низкоэнергетического инфракрасного лазера. Термопластическая мембрана, используемая для переноса выбранных клеток, имеет диаметр около 6 мм и располагается на дне оптически прозрачной крышки, которая закрывает 0,5 мл микроцентрифужную пробирку с раствором для экстракции ДНК или РНК. Морфология вырезанных клеток хорошо сохраняется и может быть документирована на всех стадиях процедуры. Поскольку микродиссекция с лазерным захватом не разрушает окружающие ткани, 2—3 участка, содержащие разнородные морфологические структуры (нормальные, пограничные и опухолевые клетки), могут быть взяты для анализа с одного препарата. В настоящее время микродиссекция с лазерным захватом широко используется для анализа генетических изменений ДНК, определения потери гетерозиготности в инвазивных опухолях. Таким образом, современный патолог обладает возможностью использовать значительный арсенал методов, начиная с рутинных и заканчивая молекулярно-биологическими, для диагностики цитологического и биопсийного материалов. Выбор тех или иных методов обусловливается видом материала (мазок, криостатный или парафиновый срез), особенностями его фиксации, гистоархитектурными особенностями ткани и конечными целями исследования.
Патологическая анатомия: введение в предмет, общие аспекты, методы исследования в патологии.
Учебно-методическая разработка для студентов лечебно-профилактического и лечебно-диагностического факультетов
Автор: ассистент Батько К.Е.
Гомель, 2006г.
ПАТОЛОГИЧЕСКАЯ АНАТОМИЯ И ЕЕ МЕСТО СРЕДИ МЕДИКО-БИОЛОГИЧЕСКИХ ДИСЦИПЛИН Патологическая анатомия является составной частью патологии — науки, изучающей закономерности возникновения и развития болезней, отдельных патологических процессов и состояний. В истории развития патологической анатомии выделяют четыре основных периода: анатомический (с древности до начала XIX века), микроскопический (с первой трети XIX века до 50-х годов XX века), ультрамикроскопический (после 50-х годов XIX века); современный, четвертый период развития патологической анатомии можно охарактеризовать как период патологической анатомии живого человека. Для современной медицины характерен постоянный поиск наиболее объективных материальных критериев диагностики и познания сущности болезни. Среди этих критериев морфологический приобретает исключительное значение как наиболее достоверный. Современная патологическая анатомия широко использует достижения других медико-биологических дисциплин, обобщая фактические данные биохимических, морфологических, генетических, патофизиологических и других исследований с целью установления закономерностей, касающихся работы того или иного органа, системы при различных заболеваниях. Благодаря задачам, которые решает в настоящее время патологическая анатомия, она занимает особое место среди медицинских дисциплин. С одной стороны, патологическая анатомия — это теория медицины, которая, раскрывая материальный субстрат болезни, непосредственно служит клинической практике, с другой — это клиническая морфология для диагноза, дающая материальный субстрат теории медицины — общей и частной патологии человека [Серов В.В., 1982]. Под общей патологией понимают наиболее общие, т.е. свойственные всем болезням, закономерности их возникновения, развития и исходов. Уходя своими корнями в частные проявления различных болезней и основываясь на этих частностях, общая патология одновременно синтезирует их, дает представление о типовых процессах, характерных для той или иной болезни. В результате прогресса медико-биологических дисциплин (физиология, биохимия, генетика, иммунология) и сближения с ними классической морфологии стало очевидным существование единого материального субстрата проявлений жизнедеятельности, включающего весь диапазон уровней организации — от молекулярного до организменного, и никакие, даже ничтожные функциональные нарушения не могут возникнуть и исчезнуть, не отразившись в соответствующих структурных изменениях на молекулярном или ультраструктурном уровне. Таким образом, дальнейший прогресс общей патологии не может быть поставлен в зависимость от развития какой-либо одной дисциплины или их группы, так как общая патология сегодня представляет собой концентрированный опыт всех отраслей медицины, оцененный с широких биологических позиций. Каждая из современных медицинских и медико-биологических дисциплин вносит свою лепту в построение теории медицины. Биохимия, эндокринология и фармакология раскрывают тонкие механизмы процессов жизнедеятельности на молекулярном уровне; в патологоанатомических исследованиях законы общей патологии получают морфологическую интерпретацию; патологическая физиология дает их функциональную характеристику; микробиология и вирусология являются важнейшими источниками разработки этиологического и иммунологического аспектов общей патологии; генетика раскрывает секреты индивидуальности реакций организма и принципы их внутриклеточного регулирования; клиническая медицина завершает оформление законов общей патологии человека на основе собственного богатейшего опыта и окончательной оценки получаемых экспериментальных данных под углом зрения психологических, социальных и других факторов. Итак, общая патология подразумевает такой подход к оценке наблюдаемых явлений, который характеризуется их широким медико-биологическим анализом. Для современного этапа развития медицины характерно то, что дисциплины, ранее бывшие преимущественно или даже исключительно экспериментальными (генетика, иммунология, биохимия, эндокринология, патологическая физиология и др.), становятся в равной мере и клиническими. Таким образом, современная общая патология включает: - обобщение фактических данных, полученных с помощью методов исследования, используемых в различных медико-биологических дисциплинах; - изучение типовых патологических процессов; - разработку проблем этиологии, патогенеза, морфогенеза болезней человека; - развитие философско-методологических аспектов биологии и медицины (проблемы целесообразности, соотношения структуры и функции, части и целого, внутреннего и внешнего, социального и биологического, детерминизма, целостности организма, нервизма и др.) на основе осмысления всей совокупности фактов, полученных в различных областях медицины; - формирование теории медицины вообще и учения о болезни в частности. Быстрое развитие клинической физиологии, клинической морфологии, клинической иммунологии, клинической биохимии и фармакологии, медицинской генетики, принципиально новых методов рентгенологического исследования, эндоскопии, эхографии и чрезвычайно обогатило наши знания о фактических деталях и общих закономерностях развития болезней человека. Все более широкое использование неинвазивных методов исследования (компьютерная томография, ультразвуковая диагностика, эндоскопические методы и др.) позволяет визуально определять локализацию, размеры и даже в известной степени характер патологического процесса, что по существу открывает пути развития прижизненной патологической анатомии — клинической морфологии, которой посвящен курс частной патологической анатомии. Сфера применения морфологического анализа в клинике постоянно расширяется благодаря все возрастающей хирургической активности и успехам медицинской техники, а также в связи с совершенствованием методических возможностей морфологии. Совершенствование медицинских инструментов привело к тому, что практически не осталось таких областей организма человека, которые были бы недоступны для врача. При этом особое значение для совершенствования клинической морфологии приобретает эндоскопия, позволяющая клиницисту заниматься морфологическим изучением болезни на макроскопическом (органном) уровне. Эндоскопические исследования служат и целям биопсии, с помощью которой патологоанатом получает материал для морфологического исследования и становится полноценным участником решения вопросов диагностики, терапевтической или хирургической тактики и прогноза заболевания. Используя материал биопсии, патологоанатом решает и многие теоретические вопросы патологии. Поэтому биоптат становится основным объектом исследования при решении практических и теоретических вопросов патологической анатомии. Методические возможности современной морфологии удовлетворяют стремления патологоанатома ко все возрастающей точности морфологического анализа нарушенных процессов жизнедеятельности и все более полной и точной функциональной оценке структурных изменений. Современные методические возможности морфологии огромны. Они позволяют изучать патологические процессы и болезни на уровне организма, системы, органа, ткани, клетки, клеточной органеллы и макромолекулы. Это макроскопические и светооптические (микроскопические), электронно-микроскопические, цито- и гистохимические, иммуногистохимические и авторадиографические методы. Наблюдается тенденция к комплексированию ряда традиционных методов морфологического исследования, в результате чего возникли электронно-микроскопическая гистохимия, электронно-микроскопическая иммуноцитохимия, электронно-микроскопическая авторадиография, существенно расширившие возможности патологоанатома в диагностике и познании сущности болезней. Наряду с качественной оценкой наблюдаемых процессов и явлений появилась возможность количественной оценки и при использовании новейших методов морфологического анализа. Морфометрия дала в руки исследователей возможности применения электронной техники и математики для суждения о достоверности результатов и правомочности трактовки выявленных закономерностей. С помощью современных методов исследования патологоанатом может обнаружить не только морфологические изменения, свойственные развернутой картине того или иного заболевания, но и начальные изменения при болезнях, клинические проявления которых еще отсутствуют в силу состоятельности компенсаторно-приспособительных процессов [Саркисов Д.С., 1988]. Следовательно, начальные изменения (доклинический период болезни) опережают их ранние клинические проявления (клинический период болезни). Поэтому главным ориентиром в диагностике начальных стадий развития заболевания служат морфологические изменения клеток и тканей. Патологическая анатомия, располагая современными техническими и методическими возможностями, призвана решать задачи как клинико-диагностического, так и научно-исследовательского характера. Вырастает значение экспериментального направления, когда ответы на сложные вопросы этиологии и патогенеза заболеваний ищут и клиницист, и патолог. Эксперимент испо
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 1483; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.82.26 (0.018 с.) |