Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вероятность безотказной работы элемента p(t).Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
- вероятность того, что в заданном интервале времени t в элементе не возникнет отказ.
Так как отказ - случайная величина, то нельзя заранее сказать чему будет равно время работы i элемента, но можно определить вероятность того, что он не откажет в течении заданного времени t. Это может быть определено по данным испытания. Практически для вероятности безотказной работы p(t) используется следующая статистическая оценка p*(t)=[N-n(t)]/N, где N- число элементов на испытании, n(t)- число элементов отказавших в течение времени t. Точность оценки будет тем выше, чем больше N, в пределе статистическая оценка будет стремится к истинному значению при NÞ к бесконечности: p*(t)=Lim[N-n(t)]/NÞp(t).
Вероятность безотказной работы системы P(t). - вероятность того, что в заданном интервале времени t в системе не возникнет отказ. Если элементы в системе соединены последовательно относительно надежности, то выход из строя хотя бы одного элемента приводит к отказу всей системы. Если вероятности безотказной работы элементов в системе будут p1(t), p2(t),.. pN(t) то в соответствии с теоремой умножения вероятности (вероятность произведения 2х событий равна произведению вероятности одного из них на условную вероятность другого, при условии что первая имело место) вероятность безотказной работы системы имеет вид: P(t)= p1(t) p2(t)... pN(t). Если p1(t)= p2(t)= pN(t), тогда P(t)=[p(t)]N. Так как вероятность безотказной работы элементов всегда меньше единицы, то из расчетов следует: 1) надежность системы уменьшается при увеличении числа элементов в ней; 2) вероятность безотказной работы системы всегда меньше вероятности безотказной работы самого ненадежного элемента.
Вероятность отказа системы Q(t). Под вероятностью отказа системы понимают вероятность того, что за малый интервал времени t в системе произойдет отказ, т.е. время исправной работы системы будет меньше заданного. Так как безотказная работа и отказ- события противоположные, то Q(t)=1-P(t) Q(t)=1-{[1- [1-q2(t)]... [1-qN(t)]} при q(t)- одинаковых Q(t)=1-[1-q(1)]N. Если надежность оценивается для малых промежутков времени, когда вероятность отказа много меньше 1, тогда Q(t)=1-{1-[q1(t)+ q2(t)+... qN(t)]}=Sqi(t)(от 1 до N). Если вероятность отказов элементов равны, то Q(t)=Nq(t).
Частота отказов f(t). Под частотой отказов элементов понимают число отказов за единицу времени, отнесенное к первоначальному числу элементов, поставленных на испытание. Статистически определение частоты производится по выражению: f=n(Dt)/(N*Dt), где n(Dt)- число элементов, отказавших за интервал времени Dt; N- число элементов, поставленных на испытание; Dt- рассматриваемый интервал времени. При определении частоты отказов элементы не ремонтируются и новыми не заменяются. По полученным оценочным значениям строится гистограмма. Если dt мало, то вероятность отказа одновременно 2х элементов весьма мала и следовательно вероятность отказа любого элемента пропорционально длине промежутка времени и равна q*(t,t+dt)=f*(t)dt. График показывает как распределена плотность вероятности времени исправной работы в каждой точке. Вероятность отказа элемента за время t может быть найдена интегрированием функции f(t) за этот промежуток времени: q(t)=$f(t)dt(от 0 до t) или p(t)=1-q(t)=1-$f(t)dt(от 0 до t)=$f(t)dt(от t до +бесконечности). Если продеффиринцировать полученное уравнение то получим: dp(t)/dt=-f(t)=-p’(t) или f(t)=q’(t). Производная показывает скорость снижения надежности во времени. Так, частота отказов показывает скорость падения надежности невосстанавливаемых элементов. Достоинства этого критерия в том, что он позволяет судить о числе элементов которые откажут в течении определенного интервала времени. Понятие частоты отказов используется только для невосстанавливаемых изделий. Для восстанавливаемых изделий используется критерий средняя частота отказов (параметр потока отказов)- fср(t) – это отношение числа отказавших в единицу времени элементов к общему их числу, при условии что отказавшие элементы заменяются новыми: fср(t)= n(Dt)/(N*Dt). Если сравнить fср(t) и f(t) то мы увидим что fср(t)>f(t). Эти два критерия связаны между собой интегральным уравнением Вольтера второго рода. Достоинства этого критерия в том, что он отражает реальные условия эксплуатирования.
6. Средняя частота отказа - это отношения числа отказавших в единицу времени элементов к общему числу элементов при условии, что отказавшие элементы заменились новыми Формула имеет вид
где n(Δti) – число элементов отказавших в интервале Δti N – число элементов поставленных на испытание Δti – интервал времени для которого определяется средняя частота отказов. fср(ti) = ω(t) = lim n(Δti)/NΔti N→∞ F(t) = a(t) – частота отказов Параметр потокоотказа и частота отказов для ординарных потоков с ограниченным последствием при мгновенном восстановлении связи интегрируемым уравнением Вольтера 2 рода t f ср (t) = f(t) + ∫ f ср (τ) f (t – τ) dτ Данное уравнение в оперативной форме fср (s) = f(s)/ 1-f(s)
f(s) = fср(s) / 1+ f ср(s) ∞ -sτ f(s) = ∫f(t)e dt Критерий этот используется для восстанавливающейся аппаратуры, а так как элементы которые вновь будут отказывать то всегда f ср(t) ≥ f(t) Достоинство этого критерия в том,что отражает реальны процесс эксплуатации аппаратуры.
Интенсивность отказов l(t). Интенсивностью отказов называется отношение числа отказов в единицу времени, отнесенное к среднему числу элементов, исправно работающих в данный отрезок времени. При определении интенсивности отказов отказавшие элементы новыми не заменяют l*(ti)= n(Dt)/(Nср*Dt)[1/час]; Nср=(Ni+Ni+1)/2=Ni-[n(t)/2]. Этот критерий показывает как снижается надежность во времени, т.е. какое число элементов откажет после некоторого времени работы. Для абсолютного большинства приборов, машин, механизмов и систем этот график имеет следующий вид: Область 1 характеризуется повышенной и постоянно снижающейся интенсивностью отказов. Отказы в этом интервале в основном происходят из-за грубых дефектов производства, а сам участок носит название участка приработки. Участок 2- участок нормальной эксплуатации, характеризуется тем, что на этом участке интенсивность постоянна, длительность его тысячи и десятки тысяч часов. Участок 3- наблюдается увеличение интенсивности отказов, которая связана со старением и износом элементов. Момент времени t2 может служить тем моментом, когда аппаратуру необходимо снимать с эксплуатации. l- характеристика является одной из важнейших и значение ее приводится в справочниках и учебниках по надежности (для нормального периода эксплуатации). Интенсивность отказов для восстанавливаемых систем. Для этих систем под интенсивностью отказа системы понимают количество отказов в единицу времени. При этом после каждого отказа система восстанавливается, а отказавшие элементы заменяются новыми L(t)=1/mS[n(Dt)/Dt](сумма от1 до m), где m- число интервалов наблюдения; n(Dt)- число элементов отказавших за Dt. Так как отказы любой системы слагаются из отказов входящих в нею элементов то при l(t)=const интенсивность отказов системы L(t) может быть определена: L(t)=Sfсрi(Dt)(сумма от i=1 до к), где к- число групп элементов с различной средней частотой отказов, т.е. интенсивность отказов равна сумме средних частот отказов всех элементов.
|
|||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 1921; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.102.46 (0.009 с.) |