Фермы с поясами из широкополочных тавров



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Фермы с поясами из широкополочных тавров



Тавры с параллельными гранями полок получают путем продольно­го роспуска широкополочных двутавров. Тавры применяются в поясах ферм, решетка выполняется из спаренных или одиночных горячеката­ных или холодногнутых уголков. По сравнению с фермами со стержня­ми из парных уголков фермы с поясами из тавров экономичнее по массе металла на 10-12 %, по трудоемкости на 15-20 % и по стоимости на 10-15 %. Экономия достигается за счет уменьшения числа деталей, размеров фасонок и длины сварных швов. Наиболее высокие экономи­ческие показатели имеют фермы с перекрестной решеткой (рис.е), укоторых прикрепление раскосов из одиночных уголков к поясам не требует фасонок. При стержнях решетки из парных уголков и при ти­повой схеме решетки ферм, как правило, нужно иметь узловые ушире-ния, чтобы получить необходимую длину сварных швов (рис. а). Стыковые швы соединения узловых фасонок со стенками тавров следу­ет рассчитывать на срез от суммы расчетных усилий, в примыкающих раскосах, спроектированных на ось пояса. Заводские стыки выполняют­ся с введением вертикальных листовых вставок и горизонтальных на­кладок.

Укрупнительные стыки стропильных ферм имеют конструкцию, обес­печивающую получение двух симметричных полуферм (рис. б).

Для этого средняя стойка выполняется из двух уголков крестом. Пояса перекрываются вертикальными и горизонтальными накладками.

 

Рис. Узлы ферм с поясами из тавров

 

32.Определение расчетной длины стержней фермы

Несущая способность сжатых элементов зависит от их расчетной длины:

lef = μ× l, (1)

где ц - коэффициент приведения длины, зависящий от способа за­крепления концов стержня;

l - геометрическая длина стержня (расстояние между центрами узлов или точками закрепления от смещения).

Заранее мы не знаем, в каком направлении произойдет выпучи­вание стержня при потере устойчивости: в плоскости фермы или в перпендикулярном направлении. Поэтому для сжатых элементов необходимо знать расчетные длины и проверить устойчивость в обо­их направлениях. Гибкие растянутые стержни могут провисать под действием собственного веса, их легко повредить при транспорти­ровке и монтаже, а при действии динамических нагрузок они могут вибрировать, поэтому их гибкость ограничена. Для проверки гибкости необходимо знать и расчетную длину растянутых стержней.

На примере стропильной фермы производственного здания с фонарем (рис.) рассмотрим приемы определения расчетных длин. Возможное искривление поясов фермы при потере устойчиво­сти в ее плоскости может произойти между узлами (рис. а).

Поэтому расчетная длина пояса в плоскости фермы равна расстоя­нию между центрами узлов (μ = 1). Форма потери устойчивости из плоскости фермы зависит от того, в каких точках пояс закреплен от смещения. Если по верхнему поясу уложены жесткие металлические или железобетонные панели, приваренные или закрепленные к поя­су на болтах, то ширина этих панелей (как правило, равная расстоя­нию между узлами) и определяет расчетную длину пояса. Если в ка­честве кровельного покрытия используется профилированный на­стил, прикрепленный непосредственно к поясу, то пояс закреплен от потери устойчивости по всей длине. При кровле по прогонам расчетная длина пояса из плоскости фермы равна расстоянию между прогонами, закрепленными от смещения в горизонтальной плоско­сти. Если прогоны не закре­пили связями, то они не могут пре­пятствовать смещению пояса фермы и расчетная длина пояса будет равна всему пролету фермы. Для того что­бы прогоны обеспечивали закрепле­ние пояса, необходимо поставить горизонтальные связи (рис. б)и связать с ними прогоны. На уча­стке покрытия под фонарем необходимо поставить распорки.

а - деформации верхнего пояса при потере устойчивости в плоскости фер­мы; б, в - то же, из плоскости фермы; г - деформации решетки

Рис. К определению расчет­ных длин элементов ферм

 

Таким образом, расчетная длина пояса из плоскости фермы в общем случае равна расстоянию между точками, закрепленными от смеще­ния. Элементами, закрепляющими пояс, могут служить кровельные па­нели, прогоны, связи и распорки. В процессе монтажа, когда элементы кровли еще не установлены для за­крепления фермы, из их плоскости могут использоваться временные связи или распорки.

При определении расчетной длины элементов решетки мо­жно учесть жесткость узлов. При потере устойчивости сжатый элемент стремится повер­нуть узел (рис.г). Примыкающие к этому узлу стержни сопротивляются изгибу. Наибольшее со­противление повороту узла оказывают растянутые стержни, по­скольку их деформация от изгиба ведет к сокращению расстояния между узлами, между тем как от основного усилия это расстояние должно увеличиваться. Сжатые же стержни слабо сопротивляются изгибу, так как деформации от поворота и осевого усилия направле­ны у них в одну сторону и, кроме того, они сами могут терять ус­тойчивость. Таким образом, чем больше растянутых стержней при­мыкает к узлу и чем они мощнее, т.е. чем больше их погонная жест­кость, тем больше степень защемления рассматриваемого стержня и меньше его расчетная длина. Влиянием сжатых стержней на защем­ление можно пренебречь.

Сжатый пояс слабо защемлен в узлах, поскольку погонная жест­кость растянутых элементов решетки, примыкающих к узлу, невели­ка. Поэтому при определении расчетной длины поясов мы не учитывали жесткость узлов. Аналогично и для опорных раскосов и стоек. Для них расчетные длины, как и для поясов, равны геометрической, т.е. расстоянию между центрами уз­лов.

Для прочих элементов решетки принимается следующая схема. В узлах верхнего пояса большинство элементов сжаты и мера защемления мала. Эти узлы можно считать шарнирными. В узлах нижнего пояса большинство сходящихся в узле элементов растяну­ты. Эти узлы являются упругозащемленными.

Степень защемления зависит не только от знака усилий стерж­ней, примыкающих к сжатому элементу, но и от конструкции узла. При наличии фасонки, ужесточающей узел, защемление больше, поэтому, согласно нормам, в фермах с узловыми фасонками (например, из парных уголков) расчетная длина в плоскости фермы равна 0,8×l, а в фермах с примыканием элементов впритык, без узло­вых фасонок - 0,9×l .

При потере устойчивости из плоскости фермы степень защемле­ния зависит от крутильной жесткости поясов. Фасонки из своей плоскости гибкие и могут рассматриваться как листовые шарниры. Поэтому в фермах с узлами на фасонках расчетная длина элементов решетки равна расстоянию между узлами l1. В фермах с поясами из замкнутых профилей (круглых или прямоугольных труб), имею­щих высокую крутильную жесткость, коэффициент приведения рас­четной длины может быть принят равным 0,9.

В таблице приведены расчетные длины элементов для наиболее распространенных случаев плоских ферм.

33.Подбор сечения сжатых и растянутых элементов

Подбор сечения сжатых элементов

Подбор сечений сжатых элементов ферм начинается с определения требуемой площади из условия устойчивости

, (2)

откуда

.

1) Предварительно можно принять для поясов легких ферм l = 60 - 90 и для решетки l = 100 - 120. Большие значения гиб­кости принимаются при меньших усилиях.

2) По требуемой площади подбирают из сортамента подходящий профиль, определяют его фактические геометрические характеристики A, iх , iy.

3) Находят lх = lx/ix и ly =ly/iy, по большей гибкости уточняют коэффици­ент j.

4) Делают проверку устойчивости по формуле (2).

Если гиб­кость стержня предварительно была задана неправильно и проверка показала перенапряжение или значительное (больше 5-10 %) недонапряжение, то проводят корректировку сечения, принимая проме­жуточное между предварительно заданной и фактической значение гибкости. Обычно второе приближение достигает цели.

Примечание.Местную устойчивость сжатых элементов, выполненных из про­катных сечений, можно считать обеспеченной, поскольку из усло­вий прокатки толщина полок и стенок профилей больше, чем требу­ется из условий устойчивости.

При выборе типа профилей нужно помнить, что рациональным является сечение, имеющее одинаковые гибкости как в плоскости, так и из плоскости фермы (принцип равноустойчивости), поэтому при назначении профилей необходимо обратить внимание на соотношение рас­четных длин. Например, если проектируем ферму из уголков и расчетные длины элемента в плоскости и из плоскости одинаковы, то рационально выбрать неравнополочные уголки и поставить их большими полками вместе, так как в этом случае ix ≈ iy, и при lx = ly λx ≈ λy. Если расчетная длина из плоскости ly в два раза больше расчетной длины в плоскости lx (например, верхний пояс на участке под фонарем), то более рациональным будет сечение из двух неравнополочных уголков, поставленных вместе малыми полками, так как в этом случае ix ≈ 0,5×iy и при lx =0,5×ly λx ≈ λy. Для элемен­тов решетки при lx =0,8×ly наиболее рациональным будет сечение из равнополочных уголков. Для поясов ферм лучше запроектировать сечение из неравнополочных уголков, поставленных вместе меньшими полками, чтобы при подъ­еме фермы обеспечить большую жесткость из плоскости.

33.Подбор сечения растянутых элементов

Требуемую площадь сечения растянутого стержня фермы определяем по формуле

. (3)

Затем по сортаменту выбирают профиль, имеющий ближайшее большее значение площади. Проверка принятого сечения в этом случае не требуется.

34.Подбор сечения стержней по предельной гибкости

Элементы ферм следует проектировать, как правило, из жестких стержней. Особенно существенное значение жесткость имеет для сжатых элементов, предельное состояние которых определяется по­терей устойчивости. Поэтому для сжатых элементов ферм в СНиПе установлены требования по предельной гибкости более жесткие, чем в зарубежных нормативных документах. Пре­дельная гибкость для сжатых элементов ферм и связей зависит от назначения стержня и степени его загруженности: , где N - расчетное усилие, j×Ry×gc - несущая способность.

Растянутые стержни также не должны быть слишком гибкими, особенно при воздействии динами­ческих нагрузок. При статических нагрузках гибкость растянутые элементов ограничивается только в вертикальной плоскости. Если растянутые элементы предварительно напряжены, то их гибкость не ограничивается.

Ряд стержней легких ферм имеют незначительные усилия и, сле­довательно, небольшие напряжения. Сечения этих стержней подби­рают по предельной гибкости. К таким стержням обычно от­носят дополнительные стойки в треугольной решетке, раскосы в средних панелях ферм, элементы связей и т.п.

Зная расчетную длину стержня lef и значение предельной гиб­кости lпр, определяем требуемый радиус инерции iтр = lef / lтр. По нему в сортаменте выбираем сечение, имеющее наименьшую площадь.

 

 



Последнее изменение этой страницы: 2016-04-21; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.117.38 (0.007 с.)