Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Семейства однокристальных микроконтроллеров. Базовая органи-зацияСодержание книги
Поиск на нашем сайте
Семейства однокристальных микроконтроллеров ориентировано на применение встраиваемых в изделие недорогих управляющих систем реального времени, рабочая программа которых расположена в ПЗУ системы. Широко применяются микроконтроллеры семейства iMCS-48, iMCS-51, iMCS-96, имеющие гарвардскую архитектуру, содержащие на кристалле все необходимые узлы для работы в автономном режиме и предназначенные для реализации различных цифровых алгоритмов управления. Рассмотрим базовый микроконтроллер Intel 8051 (МК-51), условное обозначение которого приведено на рисунке 52.
Рисунок 52 – Условное обозначение микроконтроллера МК – 51
В состав микроконтроллера МК-51 входит 8-разрядный центральный процессор, управляющий работой исполнительных устройств микроЭВМ и имеющий аппаратную поддержку операций умножения и деления. Всего процессор выполняет 111 команд разрядностью в 1, 2 или 3 байта. На рисунке 53 приведена структурная схема базовой организации микроконтроллера МК-51:
Рисунок 53 – Структурная схема микроконтроллера МК – 51.
Внутренняя (расположенная на кристалле) память программ объемом 4К байт. Внутренняя память данных объемом 128 байт, используемая для организации регистровых банков, стека и хранения пользовательских данных. 32 двунаправленные интерфейсные линии, индивидуально настраиваемые на ввод или вывод информации и организованные в виде четырех 8-разрядных параллельных портов Р0 - Р3. Два 16-разрядных многорежимных таймера/счетчика T/C0 и T/C1, используемые для подсчета внешних событий, организации временных задержек и тактирования последовательного порта. Двунаправленный дуплексный асинхронный последовательный приемопередатчик - последовательный порт. Двухуровневая приоритетная система прерываний от четырех внутренних и двух внешних источников. Встроенный тактовый генератор, частота которого задается с помощью внешнего кварцевого резонатора, LC-цепочки или внешнего генератора. В архитектуре ВЕ51 и ее модификациях использован стандартный для МК принцип независимости сред для хранения программ и данных. Всего же архитектура ВЕ51 включает пять типов пространств, четыре из которых являются областями данных: RSEG Пространство регистров DSEG Пространство внутренней памяти данных BSEG Битовое пространство данных XSEG Пространство внешней памяти CSEG Пространство программного кода
Набор регистров МК - 51 Набор программно-доступных регистров процессора ВЕ51 приведен на рисунке 54. Он является расширением набора регистров ВЕ48, что обеспечивает совместимость архитектур ВЕ48 и ВЕ51 снизу вверх. Центральным регистром набора считается 8-разрядный аккумулятор А, выполняющий обычные функции основного арифметического регистра. Регистр В служит расширением аккумулятора А, необходимым для осуществления операций умножения и деления, причем он является как источником, так и приемником операндов. Во всех других операциях регистр В выполняет функции, определяемые пользователем. Регистр слова состояния программы включает флажки: PSW.7 CY Перенос из старшего разряда АЛУ PSW.6 АС Дополнительный перенос из младшей тетрады АЛУ PSW.5 F0 Флажок пользователя общего назначения PSW.2 OV Признак арифметического переполнения результата PSW.1 Р Признак четности Сюда же входит двухразрядное поле RS (Registers Select) выбора одного из четырех возможных банков рабочих регистров. Флажки признаков результата CY, АС и OV, как правило, отражают состояние последней арифметической операции, флажок Р - четность содержимого А. Флажок переноса CY является аккумулятором булевого процессора. Функциональное назначение флажка F0 определяется пользователем в конкретной ситуации.
Рисунок 54 – Набор регистров МК-51
Шестнадцатиразрядный программный счетчик PC управляет последовательностью выполнения команд, хранящихся в программной памяти объемом до 64К байт. Указатель данных DPTR также имеет длину 16 разрядов, каждая его половина может быть адресована независимо от другой. Этот регистр используется в качестве адресного при пересылке констант из памяти программ и доступе к переменным из внешней памяти данных, а также для организации передачи управления. Указатель стека образует системный стек глубиной до 256 байт. Он всегда содержит адрес последнего байта, занесенного в стек. Стек растет в сторону увеличения содержимого SP. В МК - 51 предусмотрено четыре банка по восемь рабочих регистров R0-R7 в каждом, переключаемых полем RS слова состояния программы. Регистры выполняют общецелевые функции промежуточного хранения данных. Два регистра R0 и R1 каждого банка реализуют также функции 8-разрядных указателей данных.
Организация памяти МК-51 Пространство внутренней памяти DSEG имеет общий объем 256 байт. Однако организация ВЕ51 предусматривает реализацию только первой его половины (128 байт). В МК 8052 DSEG используется в полном объеме. Подобно архитектуре ВЕ48 все банки рабочих регистров, а также системный стек в МК ВЕ51 располагаются во внутренней памяти данных и могут рассматриваться как обычные ячейки памяти. Существуют два способа адресации памяти данных МК: прямой (direct) и косвенный (@Ri, i = 0- 1) через регистры R0, R1 выбранного в данный момент одного из банков RB0-RB3. При прямой адресации доступна только младшая половина адресного пространства внутренней памяти данных (128 байт), при косвенной обеспечивается доступ к любой ее ячейке (256 байт). Введение отсутствующей в ВЕ48 прямой адресации значительно расширило возможности обработки данных МК, в частности появились средства прямого доступа в соседние регистровые банки и стек системы, интерпретируемые как обычные ячейки памяти. Микроконтроллер ВЕ51 имеет мощную и развитую подсистему ВВ и средства поддержки режима реального времени. Для их управления в МК предусмотрен ряд регистров, которые размещаются во второй половине прямо адресуемого пространства (Рисунок 55), образующей пространство специальных регистров (128 байт). Сюда же включены порты и основные регистры ЦП. Центральный процессор МК - 51 содержит специальную логику, предназначенную для выполнения нескольких однобитовых операций, булев или одноразрядный процессор для вычисления булевых выражений. В основу булева процессора положен стандартный аккумуляторный принцип организации. В данном случае роль аккумулятора выполняет флажок переноса CY. Для хранения булевых данных в архитектуре ВЕ51 предусмотрено специальное одноразрядное линейно упорядоченное пространство BSEG объемом 256 байт, которое физически совмещено с байтовым пространством данных DSEG. При этом одна часть пространства BSEG попадает на обычные ячейки памяти DSEG и может рассматриваться как область общего назначения. Обычно она используется для хранения булевых переменных. Другая часть пространства BSEG попадает на ячейки памяти, совмещенные с регистрами МК, что обеспечивает независимый доступ к их отдельным разрядам. В булевом пространстве определена только прямая адресация bit. На рисунке 53 показано в байтах пространство с прямой адресацией, которое размещено в булевом пространстве, указаны диапазоны адресов BSEG, относящихся к их разрядам.
Рисунок 55 – Прямо адресуемая часть внутренней памяти данных (а) и память специальных регистров (б)
Например, старший разряд аккумулятора А, отождествленного с ячейкой пространства памяти с прямой адресацией под адресом 0E0H, имеет адрес пространства BSEG, равный 0Е7Н.
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 433; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.85.123 (0.006 с.) |