Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Как дети образуют математические понятияСодержание книги
Поиск на нашем сайте
Это большая ошибка — думать, что ребенок приобретает понятие числа и другие математические понятия непосредственно в обучении. Наоборот, в значительной степени он развивает их самостоятельно, независимо и спонтанно. Когда взрослые пытаются навязать ребенку математические понятия преждевременно, он выучивает их только словесно; настоящее понимание приходит только с его умственным ростом. Это можно показать на простом опыте. Ребенка 5 пли G лет родители легко могут научить называть числа от 1 до 10. Если выложить 10 камешков в ряд, ребенок может правильно их сосчитать. Но если выложить камешки в виде более сложной фигуры или нагромоздить их кучей, он уже не может считать их с постоянной точностью. Хотя ребенок знает названия чисел, он еще не уловил существенной идеи числа, а именно, что число объектов в группе остается тем же, «сохраняется» независимо от того, как их растасовать или расположить. С другой стороны, мы часто обнаруживаем, что ребенок 6V2 или 7 лет спонтанно образовал понятие числа, хотя до этого его не учили считать. Если ему дать 8 красных и Я синих кусочков картона, он установит, располагая их попарно «1» к «1», что число красных такое же, как и число синих, и что обе группы остаются равными по числу независимо от формы, которая им придается. Опыт с соотнесением «1» к «1» полезен и для изучения того, как у детей развивается понятие числа. Выложим ряд из 8 красных кусочков на расстоянии около сантиметра друг от друга и попросим наших маленьких испытуемых взять из ящика столько же синих кусочков. Реакции детей будут зависеть от возраста, и мы можем наметить три стадии развития. Ребенок в возрасте 5 лет и моложе будет выкладывать синие кусочки так, чтобы сделать ряд точно такой же длины, как и красный ряд, при этом красные кусочки он кладет вплотную друг к другу, а не на расстоянии. Он думает, что число остается тем же, если длина ряда такая же. В возрасте около 6 лет дети переходят на вторую стадию; они кладут один синий кусочек против каждого красного и получают правильное число. Но это вовсе не всегда означает, что дети приобрели понятие о самом числе. Если мы раздвинем красные кусочки, сделав расстояние между ними более значительным, то шестилетний ребенок будет думать, что теперь в более длинном ряду больше кусочков, хотя мы и не изменили их число. В возрасте от 67а до 7 достигают третьей стадии: теперь они знают, что, будем ли мы сдвигать или раздвигать ряд, число кусочков в нем остается тем же, что и в другом ряду. В другом сходном опыте ребенку дают 2 сосуда одинаковой формы и размера и просят вынимать одновременно обеими руками и класть в другие 2 сосуда бусинки: синюю бусинку —в один сосуд правой рукой, а красную бусинку —в другой сосуд левой рукой. Когда ребенок более или менее наполнит сосуды, его спрашивают, как их сравнить. Ребенок уверен, что в обоих сосудах одинаковое число бусинок. Тогда его просят высыпать синие бусы в сосуд другой формы и размера. И теперь снова соответственно возрасту выступают различия в понимании. Младшие дети думают, что число изменилось: если, например, бусы наполняют сосуд до более высокого уровня, ребенок утверждает, что теперь в нем больше бус, чем было в прежнем; если бусы наполняют сосуд до более низкого уровня, ребенок думает, что теперь их меньше. Но дети около 7 лет уже понимают, что перемещение не меняет число бус. Короче говоря, дети должны уловить принцип сохранения количества, прежде чем они могут образовать понятие числа. Но, конечно, сохранение количества само по себе не является числовым понятием; это скорее логическое понятие. Так эти опыты из области детской психологии бросают некоторый свет на эпистемологию понятия числа, которое являлось предметом исследования многих математиков и логиков. <...> Исследование того, что ребенок открывает пространственные отношения, что можно назвать спонтанной геометрией ребенка, не менее плодотворно, чем изучение его числовых понятий. Порядок развития идей ребенка в области геометрии кажется обратным порядку их исторического открытия. Научная геометрия начинается с системы Эвклида (трактующей фигуры, углы и т. д.), развивается в XVII столетии в так называемую проективную геометрию (имеющую дело с проблемами перспективы), и, наконец, в XIX столетии приходит к топологии (описывающей пространственные отношения в общем качественном виде, например различие между открытыми и замкнутыми структурами, внешним и внутренним, близостью и разделением). Ребенок начинает с последнего: его первые геометрические открытия являются топологическими. В возрасте 3 лет он легко различает открытые и замкнутые фигуры: если вы попросите его срисовать квадрат или треугольник, он нарисует замкнутый круг; он рисует крест двумя отдельными линиями. Если вы показываете ему рисунок большого круга с маленьким кругом внутри, он может воспроизвести это отношение, но может также нарисовать маленький круг вне большого илн соприкасающимся с ним краем. И все это он может сделать прежде, чем сумеет нарисовать прямоугольник или выразить эвклидовы характеристики фигуры (число сторон, углы и т. д.). Лишь значительно позже того, как ребенок овладеет топологическими отношениями, он начинает развивать свои понятия эвклидовой и проективной геометрии. И тогда он строит их одновременно. <;...> Проверим наших юных испытуемых в отношении проективных структур. Сначала мы ставим 2 крайних столбика «решетчатой ограды» (маленькие палочки, вставленные в основания из пластилина) на расстоянии приблизительно 15 дюймов друг от друга и просим ребенка поставить другие столбики по прямой линии между ними. Самые младшие дети (младше 4 лет) ставят один столбик рядом с другим, образуя более или менее волнистую линию. Их подход является топологическим: элементы связаны скорей простым отношением близости, чем проекцией линии как таковой. На следующей стадии, старше 4 лет, ребенок уже может составить прямую линию, если крайние столбики расположены параллельно краю стола или если есть какая-нибудь другая прямая линия, которой ребенок может руководствоваться. Если крайние столбики расположены по диагонали стола, ребенок может начать строить линию параллельно краю стола, а затем меняет направление и образует кривую, чтобы подвести линию к последнему столбику. Случайно малыш может сделать и прямую линию, но она будет лишь одной среди прочих других, получаемых посредством проб и ошибок, а не по системе. В возрасте 7 лет ребенок может построить прямую ограду всегда и в любом направлении стола, и эту прямую линию он проверяет так: он закрывает один глаз и просматривает направление другим глазом, как это делает садовник, равняя жерди для бобов. Перед нами сущность проективного понятия; линия все еще является топологичекой линией, но ребенок улавливает, что проективное отношение зависит от угла зрения или «точки зрения». Это исследование можно продолжить с помощью другого' опыта. Например, вы ставите на стол куклу и помещаете перед ней предмет, ориентированный в определенном направлении: карандаш, лежащий наискось, по диагонали или вдоль линии взора куклы, или часы, поставленные или положенные на столе. Затем вы просите ребенка нарисовать, как кукла видит предмет, или, еще лучше, выбрать из 2 или 3 рисунков один, который это изображает. Не ранее чем около 7 или 8 лет ребенок может правильно вывести угол зрения куклы. Сходный опыт, поставленный для проверки того же вопроса, ведет к такому же заключению. Предметы разной формы помещаются в разных положениях между источником света и экраном, и ребенка просят предсказать, какой будет форма тени от предмета на экране. Способность координировать разные перспективы проявляется не ранее 9 или 10 лет. Это иллюстрирует опыт, который несколько лет тому назад я подсказал своей сотруднице д-ру Эдит Мейер. Экспериментатор сидит за столом против ребенка и ставит между ним и собой гряду гор, сделанную из картона. Оба видят эту гряду во взаимно обратной перспективе. Ребенка просят выбрать из нескольких рисунков один, соответствующий его собственному виду гряды, и один —ее виду с позиции лица, сидящего против него. Естественно, самые младшие дети могут выбрать только один рисунок, соответствующий их точке зрения; они думают, что все точки зрения подобны их собственной. Еще более интересно, что. если ребенок меняется местами с экспериментатором и теперь видит горы с другой стороны, он полагает, что его новая точка зрения является единственно правильной; он не может воспроизвести вид с точки зрения, которая была его собственной непосредственно перед этим. Это хороший пример эгоцентричности, столь характерной для детей, пример примитивного рассуждения, мешающего им понять, что может быть и более чем одна точка зрения. Дети должны проделать значительную эволюцию, чтобы где-то около 9 или 10 лет начать различать и координировать разные возможные перспективы. На этой стадии дети могут понять проективное пространство в его конкретной или практической форме, но, естественно, не в его теоретических аспектах. К тцму времени, когда ребенок образует представление о проективном пространстве, он также строит и эвклидово пространство; оба построения опираются друг на друга. Так, например, выстраивая ряд столбиков ограды, он может воспользоваться не только методом просмотра, но вытянуть параллельно обе руки, давая этим направление ограде. Он применяет понятие о сохранении направления, которое является эвклидовым принципом. Здесь мы имеем еще одну иллюстрацию того факта, что дети образуют математические понятия на качественном или логическом основании. Принцип сохранения образуется в разных формах. Первой является сохранение длины. Если вы положите один блок на другой такой же длины, а затем выдвинете один блок так, чтобы его конец выходил за границы другого, то ребенок б лет будет утверждать, что оба блока уже не равны по длине. Не ранее чем около 7 лет ребенок начинает понимать, что то, что блок выигрывает на одном конце, он теряет на другом. Нужно отметить — ребенок приходит к этому понятию о сохранении длины путем логического заключения. Экспериментальное изучение того, как ребенок открывает сохранение расстояния, особенно показательно. Между двумя маленькими игрушечными деревьями, стоящими на расстоянии друг от друга, вы помещаете стену из блоков или куска толстого картена и спрашиваете ребенка (конечно, на его языке), находятся ли теперь деревья на том же расстоянии друг от друга. Самые маленькие дети думают, что расстояние изменилось; они просто не могут сложить 2 части расстояния в одно общее расстояние. Дети 5 или б лет думают, что расстояние уменьшилось, указывая на то, что ширина стены не считается расстоянием; иными словами, заполненное пространство не имеет для них такого же значения, как пустое пространство. Только в возрасте около 7 лет дети приходят к пониманию того, что промежуточные предметы не меняют расстояния. Как бы вы ни проверяли, вы всегда обнаруживаете следующее; дети не доходят до принципа сохранения длины или поверх- ности, пока — где-то около 7 лет — не открывают обратимости, которая показывает, что первоначальное количество остается тем же (например, выравнивание блоков одинаковой длины, устранение стены и т. д.). Таким образом, открытие логических отношений является предварительным условием образования геометрических понятий, как это имеет место при образовании понятия о числе. Это относится и к самому измерению, которое также является производным понятием. Интересно проследить, как дети спонтанно научаются измерять. Д-р Инельдер, одна из моих сотрудниц, и я провели следующий эксперимент: мы показывали ребеи* ку башню из блоков, стоящую на столе, и просили его построить другую башню такой же высоты на другом столе (который был ниже или выше первого) из блоков разного размера. Конечно, мы снабжали ребенка всеми необходимыми измерительными ии* струментами. Попытки ребенка решить эту задачу проходят поразительную эволюцию. Самые младшие дети строят вторую башню до того же визуального уровня, что и первая, не заботясь о различии в высоте столов. Они сравнивают башни, отступая назад и просматривая их верхушки единым взором. На несколько более высоком этапе развития ребенок кладет на верхушки башен длинный стержень, чтобы удостовериться в том, что они на одном уровне. Несколько позже он замечает, что основание его башни находится не на том уровне, что основание модели. Тогда, чтобы уравнять их, он хочет поместить свою башню рядом с образцом, на том же столе. Вспомнив, что правила игры запрещают передвигать его башню, ои начинает оглядываться в поисках средств измерения. Интересно, что первое, приходящее ему на ум, — это его собственное тело. Он кладет одну руку на вершину своей башни, другую—на ее основание и затем, пытаясь сохранить неизменное расстояние между руками, направляется к другой башне, чтобы сравнить это расстояние с нею. Дети около б лет делают это весьма уверенно — так, как если бы их руки не могли изменить положения по пути! Вскоре они обнаруживают, что метод не надежен, и тогда прибегают к проекции точек башни на свое тело. Ребенок соотносит свои плечи с вершиной своей башни, против ее основания отмечает рукой точку на своем бедре и направляется к модели посмотреть, является ли расстояние тем же. В конце концов ребенку приходит мысль о независимом измерительном инструменте. Его первая попытка в этом направлении заключается в том, чтобы построить рядом третью башню такой же высоты, как и та, что он уже воздвиг. Построив эту третью башню, он пододвигает ее к первому столу и ставит рядом с моделью; это допускается правилами. Достижение ребенком этой стадии предполагает процесс логического рассуждения. Если мы назовем башню образец Л, вторую башию С, а перемещаемую башню В, то ребенок рассуждает так: В = С н В = А, поэтому А —С, Позднее ребенок замещает третью башню стержнем, но сначала стержень должен быть точно такой же длины, как высота башни, подлежащей измерению. Затем он постигает идею использовать более длинный стержень, на котором отмечает пальцем высоту башни. Наконец, — и это начало настоящего измерения — он понимает, что может использовать более короткий стержень и измерить высоту башни, откладывая стержень по ее стороне известное число раз. Последнее открытие содержит две новые логические операции. Первая — это процесс разделения, который позволяет ребенку понять, что целое состоит из некоторого числа сложенных вместе частей. Вторая—это операция смещения или замещения, которая позволяет ему присоединить одну часть к другой и таким путем создавать систему единиц. Поэтому можно сказать, что измерение есть синтез разделения на части и замещения, подобно тому как число есть синтез включения категорий и сериального порядка. Но измерение развивается позднее, чем понятие числа, потому что труднее разделить непрерывное целое на взаимозаменяемые единицы, чем перечислить уже разделенные элементы. Чтобы изучить измерение в двух направлениях, мы даем ребенку большой лист бумаги с карандашной точкой на нем и просим поставить точку в том же месте на другом листе такого же размера. Ребенок может воспользоваться палочками, полосками бумаги, веревочками, линейками или любым другим измерительным инструментом, в котором он нуждается. Самые младшие испытуемые довольствуются визуальным приближением, не пользуясь никакими орудиями. Позднее ребенок пользуется измерительным инструментом, но измеряет только расстояние точки от основания или бокового края листа и очень удивляется, что это единичное измерение не дает ему правильного положения точки. Тогда он измеряет расстояние точки от угла листа, пытаясь сохранить тот же наклон (угол) линейки на своем листе. Наконец, в возрасте около 8 или 9 лет он открывает, что должен разделить измерение на 2 операции; горизонтальное расстояние от боковой стороны и вертикальное расстояние от основания или верхнего края. Сходный опыт с бусами в ящике показывает, что ребенок открывает трехмерные измерения приблизительно в том же возрасте. Измерение в двух или трех направлениях приводит нас к центральной идее эвклидова пространства, а именно к идее осей координат — системы, основанной на горизонтальности или вертикальности физических объектов. Может показаться, что даже маленький ребенок должен был бы понять эти представления, ибо в конце концов он может различить между положениями «прямо вверх» и «лежащее внизу». Но в действительности представление о вертикальных и горизонтальных линиях поднимает совсем другой вопрос об этом субъективном сознании постураль-иого пространства. Д-р Инельдер и я изучали его с помощью следующих опытов: показывая сосуд, наполовину наполненный окрашенной водой, мы просили маленьких испытуемых сказать, каков будет уровень воды, если наклонить сосуд так или иначе. Не ранее 9 лет ребенок постигает идею горизонтальности и начинает отвечать правильно. Сходные опыты с отвесом или с игрушечной парусной лодкой с высокой мачтой демонстрируют, что понимание вертикальности, появляется примерно в то же время. Такое запаздывание в приобретении ребенком этих понятий в действительности не удивительно, так как эти понятия требуют, чтобы ребенок уловил не только внутренние отношения объекта, но также его отношения к внешним элементам (например, к столу, полу нлн стенам комнаты). Когда ребенок уясняет себе, как строить эти оси координат по отношению к естественным объектам (что наступает приблизительно в то же время, когда он овладевает координацией разных перспектив), он также достигает понимания того, как надЬ изображать пространство. Но к этому времени он развивает н свои основные математические понятия, которые возникают спонтанно из его собственных логических операций. Описанные мною опыты, как они ни просты, были удивительно плодотворны и выявили много неожиданных фактов. Эти факты бросают яркий свет на многие вопросы психологии и педагогики; более того, они учат нас многому о человеческом познании вообще. Вопросы психологии, 1966, jVs 4, с. 121—126. Н. С. Лейтес ВОЗРАСТНЫЕ ПРЕДПОСЫЛКИ УМСТВЕННЫХ СПОСОБНОСТЕЙ В настоящей статье речь пойдет не о специальных способностях (например, к музыке, к рисованию), а о так называемых общих, или умственных, способностях (ум, интеллект). В условиях общеобразовательной школы именно умственные способности учеников выступают на первый план. <...!> Понятно, что оценка умственных достоинств ребенка предполагает учет его возраста. Так, суждение о темпе умственного роста ученика возможно лишь при соотнесении с достигаемой к данному возрастному периоду продвннутостью в развитии. При этом нельзя, например, оценить обучаемость младшего школьника, ученика средних классов или старшеклассника в каких-то единых, абсолютных единицах измерения (ведь меняется не только объем, но н содержание усваиваемого; существует своеобразие умственного развития на разных возрастах, поэтому трудно сопоставимы темпы умственного развития учащихся разного возраста). -331 Имея дело с детьми, мы, естественно, каждый раз сталкиваемся с тем, что в нормальных условиях обучения н воспитания по мере того, как ребенок становится старше, очень заметно возрастают его умственные силы. <\..Г> Вместе с тем с точки зрения возрастной динамики развития способностей существенно, что переход от одного возрастного этапа к последующему означает и переход к качественно новым возрастным особенностям, которые не сводятся к умственному уровню. Было бы заблуждением считать, что с возрастом внутренние условия развития становятся во всех отношениях более благоприятными. Известно, например, что младшие школьники особенно податливы окружающим влияниям, и вряд лн можно думать, что умственная восприимчивость их только возрастает по мере того, как они становятся старше. Другими словами, в проявлениях интеллекта школьников по мере перехода от предыдущих лет обучения к последующим происходят сдвнгн, обусловленные как подъемом умственных сил, так и ограничением пли даже утратой некоторых ценных особенностей пройденных возрастных периодов. Не только возрастающий! уровень умственного развития, но н сами внутренние предпосылки этого развития на разных возрастных этапах могут иметь отношение к становлению н росту способностей. Возрастные особенности как компоненты способностей. Каждый период детства имеет свои особые, неповторимые достоинства, присущие только определенному этапу развития. Более того, имеются основания считать, что в отдельные периоды детства возникают повышенные, иногда чрезвычайные возможности развития психики в тех или иных направлениях, а затем такие возможности постепенно или резко ослабевают. Это заслуживает самого пристального внимания. <<...> Многие факты указывают на значение ■ «возрастной чувствительности» как предпосылки формирования способностей и как компонента самих способностей. Очень показателен, например, период овладения детьми речью, когда каждого нормального ребенка отличают особая чуткость к языку, активность в отношении языковых форм, элементы языкового творчества... Вместе с тем отмечается и другое: особая расположенность к языку, выполнив свою жизненную функцию, сделав возможным быстрое овладение формами языка н мышления, затем идет на убыль. Известно, что если в силу каких-либо исключительных обстоятельств знакомство с языком именно в эти ранние годы задерживается, что развитие речи затем крайне затрудняется. <.«>. Так обстоит дело не только с речевыми способностями. К возрастным периодам детства приурочиваются проявления и весьма общих умственных качеств; особая любознательность; свежесть, острота восприятия; яркость воображения, проявляющаяся, в частности, в творческих играх; черты ясности, конкретности мышления и т. д. Очень значимые для развития умствен- ных способностей черты детской психики как бы приходят и уходят, обусловленные определенным возрастным этапом. Укажем на некоторые черты, характерные для основных периодов школьного детства, уже гораздо более сложные, которые могут быть отнесены к внутренним условиям, благоприятствующим росту общих способностей. Так, самых младших школьников отличает особая готовность усваивать, доверчивое подчинение авторитету, вера в истинность всего, чему учат, — все это неповторимые предпосылки обучаемости в младшем школьном возрасте (но те же свойства, если они будут присущи ребенку и дальше, могут стать источником формализма, школярства, т. е. отрицательных качеств). Школьников, вступивших в подростковый возраст, отличают подъем энергии и широта склонностей, потребность испытать, применить свои крепнущие силы, стремление к самоутверждению. Такие возрастные черты с новой стороны открывают возможности для общего развития. У старших школьников прежде всего обращают на себя внимание новый уровень сознательности, обогащение нравственной сферы, поиски жизненной перспективы; для старшеклассников становится характерной склонность к самовоспитанию. Умственному росту в пору ранней юности благоприятствует и усиление более специальных интересов и склонностей. <;...!> В отмеченных возрастных особенностях нет чего-либо необычного, это нормальные черты растущего человека, позволяющие понять, как в соответствующий возрастной период активизируются то одни, то другие возможности психики и подготавливается общее развитие. <.••>■, Особо следует отметить, что наиболее общие умственные свойства — активность и саморегуляция. Эти две стороны пер* воосновы способностей вполне определенным образом изменяются от одной возрастной ступени к другой. Повышенная умственная активность — характерная возрастная черта детей и подростков, она во многом выражает природно обусловленную потребность в умственных впечатлениях и умственных усилиях... У младших школьников она выступает по преимуществу в непосредственной любознательности, составляющей как бы первоисточник будущей исследовательской мысли. В среднем школьном возрасте умственная активность сочетается с возрастающей настойчивостью, обнаруживается в широте и переменчивости увлечений (у детей и подростков общая активность заметно опережает развитие более специальных интересов и склонностей). У старших школьников она уже в значительной степени носит избирательный характер и оказывается более тесно связанной с содержательными устремлениями личности. Существенно, что возрастные различия касаются и таких проявлений активности, которые от младших классов к старшим отнюдь не возрастают, например, легкость ее пробуждения, непосредственность реакций на окружающее в ходе возрастного развития явно идет на убыль. Важно иметь в виду, что с возрастными особенностями активности связано развитие способностей. <...> Другая важнейшая предпосылка развития и сторона умственных способностей — особенности саморегуляции. Саморегуляция, как и активность, выступает во всех психических актах (жизненная роль психики как раз и состоит в регуляции поведения и деятельности). Несомненно, что и особенности саморегуляции ребенка неотделимы от свойств возраста и не сводятся лишь к результатам научения. В годы школьного детства вместе с ростом нервных возможностей человека возрастает и качественно преобразуется способность к саморегуляции. Происходящее в ходе возрастного развития последовательное изменение уровней и своеобразия саморегуляции очень заметно, опять-таки при сопоставлении учеников младшего, среднего и старшего школьного возраста. Так, непосредственность, поспешность и подражательность в действиях младших школьников сменяются в средних классах готовностью к более длительным усилиям, тяготением к делам, требующим постепенного освоения и самостоятельности; старших школьников отличает особая расположенность к сознательной саморегуляции. В отличие от хода развития некоторых черт умственной активности возможности саморегуляции во всех отношениях повышаются, увеличиваются с возрастом. Возрастные свойства в каждом периоде детства составляют структуры, по-своему благоприятствующие росту способностей. Именно в годы детства (в отличие от зрелости) временные факторы возрастного развития являются одновременно и компонентами формирующихся способностей. Тем самым, как это ни парадоксально звучит с точки зрения предпосылок развития способностей, дети как бы одареннее взрослых. Разумеется, возрастные предпосылки способностей — сами возрастные особенности, их приуроченность к определенным годам жизни — не являются лишь чем-то повторяющимся в каждом поколении: они не могут не зависеть от влияний среды, от конкретных социально-исторических условий. Возрастные особенности психики формируются и развиваются в самом процессе взаимодействия ребенка с окружающим миром. Вместе с тем нельзя не учитывать и того, что влияние обучения и воспитания, в самом широком значении этих слов, опосредствуется каждый раз внутренними условиями. Среди внутренних условий, присущих возрасту, есть и такие, которые представляют собой результат развития природных свойств. Например, свойства типа нервной системы, которые могут обусловливать динамические проявления психики (накладывающие свой отпечаток на общие способности). Для возрастных психических особенностей, естественно, имеет значение стадия развития самих этих природных свойств: наиболее определенные сдвиги в свойствах нервной системы наблюдаются в раннем детстве; в подростковом возрасте, в период бурного физического и психического развития, также заметно обнаруживаются их изме- нення; далее темп их развития замедляется. Известно, например, что детей отличают (и чем младше ребенок, тем в большей степени) некоторые признаки слабости основных нервных процессов. В связи с вопросом о возрастном развитии свойств типа нервной системы опять-таки очень важно иметь в виду достоинства каждого детского возраста. Крайним упрощением было бы думать, что переход от более младших возрастов к старшим означает только подъем на более высокий уровень, совершенствование этих свойств... По-видимому, в ходе возрастного развития происходит не только последовательное увеличение возможностей нервной системы, но и ограничение некоторых ценных сторон ее свойств. Важно учитывать, что возрастные периоды представляют собой необходимые стадии развития и нельзя «перескочить» через какую-нибудь из них. К школьным годам жизни в полной мере относятся слова А. В. Запорожца об особой логике психического развития, о наличии в нем определенного самодвижения, о том, что каждая новая ступень психического развития ребенка закономерно следует за предыдущей, и переход от одной к другой обусловлен не только внешними, но и внутренними условиями... Ход возрастного развития и становление способностей. Наблюдения за изменениями умственного облика учеников нередко. привлекают внимание к случаям неравномерности возрастного психического развития: убыстрению или замедлению умственного роста, неожиданным подъемам или задержкам. Такого рода особенности хода развития, отличающие учеников-ровесников друг от друга, могут обнаруживаться в относительно одинаковых усло-вях обучения и воспитания. Различия в темпе и ритме приближения к зрелости, существование различных вариантов самого хода возрастного развития — важная сторона проблемы становления способностей. <...> Случаи, когда ребенок очень быстро развивается в умственном отношении и при прочих равных условиях далеко опережает сверстников, не так уж редки. В каждом поколении встречаются дети с раиним расцветом умственных сил. Что представляет собой развитие их способностей? Издавна наряду с восторженным любованием такими детьми сложилось, а затем стало преобладать весьма критическое, недоверчивое к ним отношение. Получили широкое распространение взгляды, согласно которым очень раннее развитие умственных способностей — это болезненное явление или результат «натаскивания»; считалось чуть ли не установленным, что «вундеркинды» не сохраняют в дальнейшем своих дарований. Скептическое и настороженное отношение к детям, выделяющимся своими способностями, было своего рода реакцией на неумеренные восторги и имело реальные основания: разочаровывающие спады в ходе их развития, очень заметные случаи несоответствия между «заявленным» в детстве н достигаемым в годы зрелости. Но в последние десятилетия наметился переход к более обоснованному и одновременно более оптимистическому отношению к детям с ранним подъемом умственных сил. Накопленные данные свидетельствуют, что такие детн в большинстве своем, вопреки распространенному представлению, не отличаются болезненностью, склонностью к нервным срывам и отнюдь не отстают в физическом развитии. Их ранние успехи в занятиях и объем деятельности, как правило, не могут быть объяснены «натаскиванием», так как быстрый рост нх умственных сил нередко происходит в неблагоприятных условиях и вопреки желанию старших, Наряду с фактами, обнаруживающими у детей с очень быстрым умственным развитием последующее замедление темпа и «выравнивание», известно и другое: немало выдающихся людей в самых разных областях деятельности были в детстве рано созревшими. Судя по всему, опережение сверстников при прочих равных условиях может указывать на полноценный и перспективный вариант возрастного развития. Однако, пожалуй, только в музыке, рисовании и некоторых видах спорта, где накоплен большой опыт воспитания одаренных детей, ранние достижения ребенка воспринимаются как возможное предзнаменование его будущих достижений. Что же касается детей с необычно быстрым умственным развитием, то не только в житейском представлении, но я для педагога-практика они нередко оказываются прежде всего чем-то сомнительным и как бы ненужным, иногда вызывают к себе ироническое отношение. Но такое отношение неоправданно. Конечно, опережение показателей возраста, сколь бы значительным оно ни было, не дает основания для сенсаций, оно не может предопределить в полной мере свойств ума в будущем, но имеются определенные основания считать, что быстрый умственный рост (если, разумеется, он обусловлен особенностями самого ребенка)—это признак во всяком случае благоприятный. Применительно к детям с ранним расцветом интеллекта особенно важно учитывать взаимосвязь проявлений способностей и возрастных особенностей. Как правильно замечает А, В. Петровский, «акцентируя внимание на первой части слова «вундеркинд», мы невольно предаем забвению вторую его часть. Вместе с тем самое существенное для понимания этого интересного (и, кстати говоря, не столь уж редкого) явления заключается в том, что все эти вундеркинды остаются детьми со своими ребячьими особенностями». Материалы специальных наблюдений показывают, чго у таких детей не только сохраняются, но и особенно ярко выступают достоинства их возраста (возрастные компоненты способностей), о которых шла речь выше. Но этого мало: даже самое полное развитие у ребенка достоинств только своего возраста не может Объяснить того удивительного богатства возможностей, которым блещут некоторые дети: наибольшая ускоренность умственного развития наступает в случаях, когда прежде срока обнаруживаются достоинства и последующего возраста! <...>. Другое дело, сохранится ли дальше благотворное действие сочетания возрастных компонентов способностей. Известно, что дальнейшее развитие детей, у которых произошло такое сочетание, может протекать по-разному. Сама возможность появления детей, «перешагивающих» через классы (без каких-либо чрезвычайных внешних обстоятельств), и последующее снижение темпа умственного развития у многих из них можно рассматривать как подтверждение того, что проявления способностей обусловлены именно возрастными, т. е. в определенную пору жизни возникающими, во многом преходящими особенностями. Достаточно известен и тип возрастного умственного развития, прямо противоположный рассмотренному; несколько замедленный, растянутый, когда исподволь, постепенно происходит накопление определенных достоинств интеллекта. Интересно, что такой путь возрастного развития на первый взгляд менее благоприятный, связанный с продлением, задержкой черт детскости, может оказаться перспективным и обусловливать последующий подъем умственных сил, Отсутствие ранних достижений отнюдь не означает, что предпосылки очень больших или выдающихся способностей не смогут выявиться в дальнейшем. Показательно, например, что в старших классах встречаются ученики, которые впервые в этом возрасте, нередко, к удивлению педагогов н соучеников, начинают обнаруживать резко возросший уровень умственных возможностей. Имеются в виду не те случаи, когда неожиданный подъем учебных успехов связан с укреплением здоровья, ликвидацией пробелов в знаниях, увеличением времени, отдаваемого занятиям, и т. п. Как показывают проведенные наблюдения, значительные сдвиги в умственном развитии некоторых учеников бывают следствием повышения чувствительности к тому, что прежде было безразличным. Такого рода «переориентация» восприимчивости и соответственно активности, судя по имеющимся материалам, может существенным образом зависеть от особенностей хода возрастного развития. <...> Для обоих рассмотренных путей становления интеллекта характерно, что неравномерность хода возрастного развития выступает в самом уровне проявляемых детьми способностей (ранний и поздний применительно к школьному детству подъем способностей). Но существенный интерес представляют и варианты возрастного развития с менее резкими сдвигами, когда ускоренность или замедленность возрастных изменений обнаруживается не столько <
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 256; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.125.236 (0.021 с.) |