![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Металлы, их свойства. Кристаллическое строение металлов и типы кристаллических решеток металлов.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Классификация материалов. Требования к конструкционным материалам. В общем случае классификация материалов включат в себя три основных разновидности материалов: металлические материалы, неметаллические материалы, композиционные материалы. По геометрическим признакам материалы и вещества принято классифицировать по виду полуфабрикатов: листы, профили, гранулы, порошки, волокна и т.п.. Поскольку материал того или иного полуфабриката изготавливается по разной технологии, применяют разделение по структуре. Общие требования, предъявляемые к конструкционным материалам Конструкционными называют материалы, предназначенные для изготовления деталей машин, приборов, инженерных конструкций, подвергающиеся механическим нагрузкам. Детали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при статических, циклических и ударных нагрузках, при низких и высоких температурах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, основные из которых— эксплуатационные, технологические и экономические. Эксплуатационные требования имеют первостепенное значение. Для того чтобы обеспечить работоспособность конкретных машин и приборов, конструкционный материал должен иметь высокую конструкционную прочность.
Конструкционной прочностью называется комплекс механических свойств, обеспечивающих надежную и длительную работу материала в условиях эксплуатации. Технологические требования (технологичность материала) направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характеризуют возможные методы его обработки. Металлы, их свойства. Кристаллическое строение металлов и типы кристаллических решеток металлов. Металлы – вещества, обладающие характерным блеском, в той или иной степени присущей всем Ме, и пластичностью. Кроме того все Ме обладают высокой электро- и теплопроводностью, положительным температурным коэффициентом линейного расширения, термоэлектронной эмиссией, около 30 Ме сверхпроводимостью. Особенность строения - все построены из таких атомов, у которых внешние электроны слабо связаны с ядром. Это наличие свободных электронов и обуславливает высокую электро- и теплопроводность. Для Ме характерно наличие металлической связи, когда положительно заряженные ионы образуют плотную, но пластичную кристаллическую решетку. При металлической связи возникают электростатические силы притяжения, которые стягивают ионы. Ионы в твердых металлах располагаются на таком расстоянии друг от друга и в таких точках пространства, в которых силы притяжения и отталкивания взаимно уравновешиваются, но каждый металл имеет определенную прочность и не рассыпается, так как силы притяжения преобладают над силами отталкивания. Наличие металлической связи объясняет многие свойства металла: каждый Ме состоит из одинаковых атомов, поэтому расстояния между этими точками пространства в разных направлениях должны быть одинаковыми и для каждого Ме своими. Это приводит к тому, что атомы и «+» ионы располагаются в пространстве закономерно, образуя правильную кристаллическую (пространственную) решетку, что соответствует минимальной энергии взаимодействия атомов. Пластичность,высокая теплопроводность, электопроводность, металлический блеск. Типы кристаллических решеток у различных металлов различны. Наиболее часто встречаются решетки:
Виды остаточных напряжений Остаточные напряжения обычно классифицируют по признакам протяженности силового поля и по физической сущности. Общепринятой является классификация по протяженности силового поля. Напряжения 1-го рода - макронапряжения. Они охватывают области, соизмеримые с размерами детали, и имеют ориентацию, связанную с формой детали. Напряжения 2-го рода - микронапряжения, распространяющиеся на отдельные зерна металла или на группу зерен. Напряжения 3-го рода - субмикроскопические, относящиеся к искажениям атомной решетки кристалла. Остаточные напряжения l-го рода в материале детали возникают в результате различных технологических факторов при ее изготовлении. Их величина определяется плотностью дислокаций, а знак зависит от характера расположения однородных дислокаций по отношению к поверхности детали. Сжимающие остаточные напряжения возникают в случае преобладающего расположения у поверхности множества положительных дислокаций на параллельных плоскостях скольжения, а в случае рас положения у поверхности отрицательных дислокаций возникают остаточные напряжения растяжения. По представлению физики твердого тела, напряжения в металле или сплаве рассматриваются как следствие искажения кристаллической решетки. Физической моделью механизма образования технологических остаточных напряжений применительно к деталям, поверхностный слой которых деформирован в процессе механической обработки, в этом случае является атомная или дислокационная модель. Технологические факторы (способы и режимы обработки поверхности, состояние инструмента, системы и степень охлаждения и др.) оказывают определяющее влияние на величину и знак остаточных напряжений. Обработка резанием (точение) поверхности заготовки детали обычно вызывает появление растягивающих напряжений величиной до 70 МПа. Глубина распространения их находится в пределах 50...200 мкм и зависит от условий формообразования поверхности. При фрезеровании возникают как растягивающие, так и сжимающие напряжения. При шлифовании чаще всего возникают растягивающие напряжения. Микронапряжения - местные остаточные напряжения 2-го рода. Они возникают в поликристаллических металлах в процессе деформации больших объемов в результате взаимодействия зерен. К остаточным напряжениям 2-го рода относят также и напряжения внутри отдельного зерна, обусловленные мозаичностью его структуры - результат взаимодействия между отдельными блоками. Эти напряжения являются следствием неоднородности физических свойств различных компонентов поликристалла, а также стесненных условий деформации отдельного зерна и анизотропии свойств внутри его. Основными причинами их возникновения являются фазовые превращения, изменения температуры, анизотропия механических свойств отдельных зерен, границы зерен и распад зерна на фрагменты и блоки при пластической деформации.
Фазовые превращения (в процессе его кристаллизации и остывания, термической обработки и распада твёрдого раствора), сопряженные с увеличением или уменьшением объёма отдельных зерен, порождают значительные остаточные напряжения. При изменении температуры микронапряжения могут возникать из-за наличия в металле различных компонентов с различными коэффициентами линейного расширения, а также из-за анизотропии свойств отдельных зерен, особенно для металлов с некубической решеткой, обусловливающей различие в величине линейного расширения по разным кристаллографическим осям. В реальном поликристаллическом металле вместо предполагаемого по расчету равномерного распределения напряжений от действия внешней нагрузки имеет место значительная неравномерность напряжений (деформаций) в отдельных зернах. Неравномерная пластическая деформация обусловливается разницей в модулях упругости различных структурных составляющих, а также неодинаковой способностью деформироваться по разным кристаллографическим осям одного и того же зерна, которая определяется величиной модулей упругости Е и G. В поликристалле, даже при однородном поле напряжений, пластическая деформация распределяется в микрообъемах неравномерно, степень неравномерности при этом достигает 400...500%. Скопление большого числа дислокаций в граничных слоях вызывает многочисленные искажения атомной решетки, а это создает напряжения 3-го рода. Наряду с этим граничный слой - зона силового взаимодействия между отдельными зернами - создает поле микронапряжений, охватывающих всю поверхность зерна. Разделение объема зерна на блоки создает в зерне микронапряжения. Причиной возникновения их являются вновь образовавшиеся границы между блоками. В граничном слое между блоками накапливаются дислокации и атомы примесей, которые искажают кристаллическую решетку и порождают напряжения. Отличие микро- и макронапряжений заключается не только в величине масштаба их проявления. Макронапряжения могут возникать в любой сплошной однородной изотропной среде. Микронапряжения в таком материале существовать не могут, они могут возникать вследствие существенной неоднородности кристаллического материала и его анизотропных свойств.
Возникновение искажений кристаллической решетки связано с отклонением атомов от положения равновесия, причиной которых являются главным образом дислокации и внедренные атомы. Распределение искажений, вызванных присутствием в решетке растворенных атомов, и различного рода несовершенств структуры при низких температурах остается постоянным.
Диаграмма с эвтектикой В этой системе не образуются фазы, представляющие собой чистые компоненты. Из жидкости могут выделяться только твердые растворы α или β. Следовательно, около вертикалей А и В, соответствующих чистым компонентам, находятся области существования твердых растворов α или β. Предельная растворимость компонента В в Аопределяется линией DF,а предельная растворимость А в В — линией CG. Сплавы, находящиеся между этими двумя линиями, nbsp; находятся за пределами растворимости двухфазными, состоящими из α + β. Окончание кристаллизации происходит по эвтектической реакции L → α + β Линия ЛЕВявляется на этой диаграмме линией ликвидус, линия ADCB— линией, солидус. Зная правило фаз и правило отрезков, можно проследить за процессом кристаллизации любого сплава. Влияние примесей.
В сталях всегда присутствуют примеси, которые делятся на четыре группы. 1. Постоянные примеси: кремний, марганец, сера, фосфор. Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями. Содержание марганца не превышает 0,5…0,8 %. Марганец повышает прочность, не снижая пластичности, и резко снижает красноломкость стали, вызванную влиянием серы. Он способствует уменьшению содержания сульфида железа FeS, так как образует с серой соединение сульфид марганца MnS. Частицы сульфида марганца располагаются в виде отдельных включений, которые деформируются и оказываются вытянутыми вдоль направления прокатки. Содержание кремния не превышает 0,35…0,4 %. Кремний, дегазируя металл, повышает плотность слитка. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, Содержание фосфора в стали 0,025…0,045 %. Фосфор, растворяясь в феррите, искажает кристаллическую решетку и увеличивает предел прочности Располагаясь вблизи зерен, увеличивает температуру перехода в хрупкое состояние, вызывает хладоломкость, уменьшает работу распространения трещин, Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25oС. Фосфор обладает склонностью к ликвации, поэтому в центре слитка отдельные участки имеют резко пониженную вязкость. Для некоторых сталей возможно увеличение содержания фосфора до 0,10…0,15 %, для улучшения обрабатываемости резанием. S – уменьшается пластичность, свариваемость и коррозионная стойкость. Р–искажает кристаллическую решетку. Содержание серы в сталях составляет 0,025…0,06 %. Сера – вредная примесь, попадает в сталь из чугуна. При взаимодействии с железом образует химическое соединение – сульфид серы FeS, которое, в свою очередь, образует с железом легкоплавкую эвтектику с температурой плавления 988oС. При нагреве под прокатку или ковку эвтектика плавится, нарушаются связи между зернами. При деформации в местах расположения эвтектики возникают надрывы и трещины, заготовка разрушается – явление красноломкости.
Красноломкость – повышение хрупкости при высоких температурах Сера снижает механические свойства, особенно ударную вязкость а 2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке. Азот и кислород находятся в стали в виде хрупких неметаллических включений: окислов (FeO, SiO2, Al2O3) нитридов (Fe 2N), в виде твердого раствора или в свободном состоянии, располагаясь в дефектах (раковинах, трещинах). Примеси внедрения (азот N, кислород О) повышают порог хладоломкости и снижают сопротивление хрупкому разрушению. Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость. Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов. Флокены – тонкие трещины овальной или округлой формы, имеющие в изломе вид пятен – хлопьев серебристого цвета. Металл с флокенами нельзя использовать в промышленности, при сварке образуются холодные трещины в наплавленном и основном металле. Если водород находится в поверхностном слое, то он удаляется в результате нагрева при 150…180 Для удаления скрытых примесей используют вакуумирование. 3. Специальные примеси – специально вводятся в сталь для получения заданных свойств. Примеси называются легирующими элементами, а стали - легированные сталями.
Поверхностная закалка Поверхностная закалка применяется с целью получения высокой твердости в поверхностном слое детали с сохранением вязкой сердцевины. Основные параметры при закалке — температура нагрева и скорость охлаждения. Температуру нагрева для сталей определяют по диаграммам состояния, скорость охлаждения — по диаграммам изотермического распада аустенита. Доэвтектоидные стали нагревают до температуры выше критической точки Ас3 на 30-50 °С. Если такие стали нагреть до температуры между критическими точками Ас1 и Ас3 и охладить, то в структуре закаленной стали, кроме мартенсита, будет присутствовать феррит, что существенно ухудшает свойства. Такая закалка называется неполной. Заэвтектоидные стали при закалке нагревают до температуры Ас1+ (40,60 °С). После охлаждения с таких температур получают структуру мартенсита с включением вторичного цементита, который повышает твердость и износостойкость режущего инструмента. Если заэвтектоидную сталь нагреть выше критической точки Аст, то после закалки получится дефектная структура грубоигольчатого мартенсита. Время нагрева зависит от размеров детали и теплопроводности стали, и его обычно определяют экспериментально. Для определения времени нагрева в справочниках приведены также полуэмпирические формулы. В таблице 1 приведены значения скорости охлаждения стали в различных средах. Химический состав. В зависимости от химического состава различают стали углеродистые (ГОСТ 380-71, ГОСТ 1050-75) и легированные (ГОСТ 4543-71, ГОСТ 5632-72, ГОСТ 14959-79). В свою очередь углеродистые стали могут быть: · малоуглеродистыми, т. е. содержащими углерода менее 0,25%; · среднеуглеродистыми, содержание углерода составляет 0,25-0,60% · высокоуглеродистыми, в которых концентрация углерода превышает 0,60% Легированные стали подразделяют на: 1. низколегированные содержание легирующих элементов до 2,5% 2. среднелегированные, в их состав входят от 2,5 до 10% легирующих элементов; 3. высоколегированные, которые содержат свыше 10% легирующих элементов. Назначение . По назначению стали бывают: · Конструкционные, предназначенные для изготовления строительных и машиностроительных изделий. · Инструментальные, из которых изготовляют режущий, мерительный, штамповый и прочие инструменты. Эти стали содержат более 0,65% углерода. · С особыми физическими свойствами, например, с определенными магнитными характеристиками или малым коэффициентом линейного расширения: электротехническая сталь, суперинвар. · С особыми химическими свойствами, например, нержавеющие, жаростойкие или жаропрочные стали. Качество. В зависимости от содержания вредных примесей: серы и фосфора-стали подразделяют на: 1. Стали обыкновенного качества, содержание до 0.06% серы и до 0,07% фосфора. 2. Качественные - до 0,035% серы и фосфора каждого отдельно. 3. Высококачественные - до 0.025% серы и фосфора. 4. Особовысококачественные, до 0,025% фосфора и до 0,015% серы. Степень раскисления. По степени удаления кислорода из стали, т. е. По степени её раскисления, существуют: · спокойные стали, т. е., полностью раскисленные; такие стали обозначаются буквами “сп” в конце марки (иногда буквы опускаются); · кипящие стали - слабо раскисленные; маркируются буквами "кп"; · полу спокойные стали, занимающие промежуточное положение между двумя предыдущими; обозначаются буквами "пс". Сталь обыкновенного качества подразделяется еще и по поставкам на 3 группы: 1. сталь группы А поставляется потребителям по механическим свойствам (такая сталь может иметь повышенное содержание серы или фосфора); 2. сталь группы Б - по химическому составу; 3. сталь группы В - с гарантированными механическими свойствами и химическим составом. В зависимости от нормируемых показателей (предел прочности σ, относительное удлинение δ%, предел текучести δт, изгиб в холодном состоянии) сталь каждой группы делится на категории, которые обозначаются арабскими цифрами. Стали обыкновенного качества обозначают буквами "Ст" и условным номером марки (от 0 до 6) в зависимости от химического состава и механических свойств. Чем выше содержание углерода и прочностные свойства стали, тем больше её номер. Буква "Г" после номера марки указывает на повышенное содержание марганца в стали. Перед маркой указывают группу стали, причем группа "А" в обозначении марки стали не ставится. Для указания категории стали к обозначению марки добавляют номер в конце соответствующий категории, первую категорию обычно не указывают. Например: Ст1кп2 - углеродистая сталь обыкновенного качества, кипящая, № марки 1, второй категории, поставляется потребителям по механическим свойствам (группа А); ВСт5Г - углеродистая сталь обыкновенного качества с повышенным содержанием марганца, спокойная, № марки 5, первой категории с гарантированными механическими свойствами и химическим составом (группа В); Вст0 - углеродистая сталь обыкновенного качества, номер марки 0, группы Б, первой категории (стали марок Ст0 и Бст0 по степени раскисления не разделяют). Качественные стали маркируют следующим образом: 1 в начале марки указывают содержание углерода цифрой, соответствующей его средней концентрации; а) в сотых долях процента для сталей, содержащих до 0,65% углерода; 05кп – сталь углеродистая качественная, кипящая, содержит 0,05% С; 60 – сталь углеродистая качественная, спокойная, содержит 0,60% С; б) в десятых долях процента для индустриальных сталей, которые дополнительно снабжаются буквой "У": У7 – углеродистая инструментальная, качественная сталь, содержащая 0,7% С, спокойная (все инструментальные стали хорошо раскислены); У12 - углеродистая инструментальная, качественная сталь, спокойная содержит 1,2% С; 2 легирующие элементы, входящие в состав стали, обозначают русскими буквами:
А – азот К – кобальт Т – титан Б – ниобий М – молибден Ф- ванадий В – вольфрам Н – никель Х – хром Г – марганец П – фосфор Ц – цирконий Д – медь Р – бор Ю – алюминий Е – селен С – кремний Ч – редкоземельные металлы
Если после буквы, обозначающей легирующий элемент, стоит цифра, то она указывает содержание этого элемента в процентах. Если цифры нет, то сталь содержит 0,8-1,5% легирующего элемента, за исключением молибдена и ванадия (содержание которых в солях обычно до 0,2-0,3%), а также бора (в стали с буквой Р его должно быть не менее 0,0010%). Примеры: 14Г2 – низко легированная качественная сталь, спокойная, содержит приблизительно 14% углерода и до 2,0% марганца. 03Х16Н15М3Б - высоко легированная качественная сталь, спокойная содержит 0,03% C, 16,0% Cr, 15,0% Ni, до З,0% Мо, до 1,0% Nb. Медь и её сплавы. Технически чистая медь обладает высокими пластичностью и коррозийной стойкостью, малым удельным электросопротивлением и высокой теплопроводностью. По чистоте медь подразделяют на марки (ГОСТ 859-78):
После обозначения марки указывают способ изготовления меди: к - катодная, б – бес кислородная, р - раскисленная. Медь огневого рафинирования не обозначается. МООк - технически чистая катодная медь, содержащая не менее 99,99% меди и серебра. МЗ - технически чистая медь огневого рафинирования, содержит не менее 99,5%меди и серебра. Медные сплавы разделяют на бронзы и латуни. Бронзы- это сплавы меди с оловом (4 - 33% Sn хотя бывают без оловянные бронзы), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой и фосфором (ГОСТ 493-79, ГОСТ 613-79, ГОСТ 5017-74, ГОСТ 18175-78). Латуни - сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Медные сплавы предназначены для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием - сплавами, обрабатываемыми давлением. Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие кол-во элемента в процентах. Приняты следующие обозначения компонентов сплавов:
А – алюминий Мц - марганец С - свинец Б - бериллий Мг – магний Ср – серебро Ж - железо Мш - мышьяк Су – сурьма К – кремний Н – никель Т – титан Кд – кадмий О – олово Ф – фосфор Х – хром Ц - цинк Примеры: БрА9Мц2Л - бронза, содержащая 9% алюминия, 2% Mn, остальное Cu ("Л"' указывает, что сплав литейный); ЛЦ40Мц3Ж - латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu; Бр0Ф8,0-0,3 - бронза на ряду с медью содержащая 8% олова и 0,3% фосфора; ЛАМш77-2-0,05 - латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди). В несложных по составу латунях указывают только содержание в сплаве меди: Л96 - латунь содержащая 96% Cu и ~4% Zn (томпак); Лб3 - латунь содержащая 63% Cu и -37% Zn.
Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкий к коррозии. В зависимости от степени чистоты первичный алюминий согласно ГОСТ 11069-74 бывает особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% Al; буква "Е" обозначает повышенное содержание железа и пониженное кремния. А999 - алюминий особой чистоты, в котором содержится не менее 99,999% Al; А5 - алюминий технической чистоты в котором 99,5% алюминия. Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой. Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. Их марки приведены в ГОСТ4784-74. К деформируемым алюминиевым сплавам не упрочняемым термообработкой, относятся сплавы системы Al-Mn и AL-Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы, входящие в состав сплава компонентов и цифры, указывающие содержание легирующего элемента в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg с добавками некоторых элементов (дуралюмины, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного хим.состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8. Чистый деформируемый алюминий обозначается буквами "АД" и условным обозначением степени его чистоты: АДоч (>=99,98% Al), АД000(>=99,80% Аl), АД0(99,5% Аl), АД1 (99,30% Al), АД(>=98,80% Аl). Литейные алюминиевые сплавы (ГОСТ 2685-75) обладает хорошей жидко-текучестью, имеет сравнительно не большую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО. Иногда маркируют по составу: АК7М2; АК21М2, 5Н2,5; АК4МЦ6. В этом случае "М" обозначает медь. "К" - кремний, "Ц" - цинк, "Н" - никель; цифра - среднее % содержание элемента. Из алюминиевых антифрикционных сплавов (ГОСТ 14113-78) изготовляют подшипники и вкладыши как литьем так и обработкой давлением. Такие сплавы маркируют буквой "А" и начальными буквами входящих в них элементов: А09-2, А06-1, АН-2,5, АСМТ. В первые два сплава входят в указанное количество олова и меди (первая цифра-олово, вторая-медь в %), в третий 2,7-3,3% Ni и в четвертый медь сурьма и теллур.
Титан - тугоплавкий металл с невысокой плотностью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей, поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40%. Титан хорошо обрабатывается давлением, сваривается, из него можно изготовить сложные отливки, но обработка резанием затруднительна. Для получения сплавов с улучшенными свойствами его легируют алюминием, хромом, молибденом. Титан и его сплавы маркируют буквами "ВТ" и порядковым номером: ВТ1-00, ВТЗ-1, ВТ4, ВТ8, ВТ14. Пять титановых сплавов обозначены иначе: 0Т4-0, 0Т4, 0Т4-1, ПТ-7М, ПТ-3В. Состав и свойства пластмасс
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используют синтетические смолы, реже применяют эфиры целлюлозы. Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества). Наполнители повышают механические свойства, снижают усадку при прессовании и придают материалу те или иные специфические свойства. Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного отношения, что позволяет изменять характеристики пластиков в достаточно широких пределах. Термопластичные пластмассы В основе термопластичных пластмасс лежат полимеры линейной или разветвленной структуры, иногда в состав полимеров вводят пластификаторы. Неполярные термопластичные пластмассы. К ним относятся полиэтилен, полипропилен, полистирол и фторопласт-4. Полиэтилен - продукт полимеризации бесцветного газа этилена, относящийся к кристаллизующимся полимерам. Чем выше плотность и кристалличность полиэтилена, тем выше прочность и теплостойкость материала. Он химически стоек и при нормальной температуре нерастворим ни в одном из известных растворителей. Недостаток его подверженность старению. При меняют для изготовления труб, пленок, литых и прессованных несиловых деталей. Полипропилен является производной этилена. Это жесткий нетоксичный материал с высокими физико-механическими свойствами. Нестабильный полипропилен подвержен быстрому старению. Недостаток полипропилена его невысокая морозостойкость (от -10 до -20°С. Полистирол - твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензине. Недостаток его невысокая теплостойкость, склонность к старению и образованию трещин. Из полистирола изготавливают детали для радиотехники, телевидения и приборов, сосуды для воды и многое другое. Фторопласт-4 является аморфно-кристаллическим полимером. Разрушение материала происходит при температуре выше 415°С. Он стоек к воздействию растворителей, кислот, щелочей и растворителей, не смачивается водой. Недостатки хладотекучесть. Применяют для изготовления труб, вентилей, кранов, насосов, мембран, уплотнительных прокладок, манжет и др. Полярные термопластичные пластмассы. Фторопласт-3 - полимер трифторхлортилена. Его используют как низкочастотный диэлектрик, кроме того из него изготавливают трубы, шланги, клапаны, насосы, защитные покрытия металлов и др. Органическое стекло - это прозрачный аморфный термопласт на основе сложный эфиров акриловой и метакриловой кислот. Материал более чем в 2 раза легче минеральных стекол, отличается высокой атмосферостойкостью, оптически прозрачен. Недостатки невысокая поверхностная твердость. Применяют для изготовления штампов, литейных моделей и абразивного инструмента. Поливинилхлорид является аморфным полимером. Пластмассы имеют хорошие электроизоляционные характеристики, стойки к химикатам, не поддерживают горение, атмосферостойки., имеют высокую прочность и упругость. Изготавливают трубы, детали вентиляционных установок, теплообменников, строительные облицовочные плитки. Полиамиды - это группа пластмасс с известными названиями капрон, нейлон, анид и др. Они продолжительное время могут работать на истирание, ударопрочны, способны поглощать вибрацию. Стойки к щелочам, бензину, спирту, устойчивы в тропических условиях. Из них изготавливают шестерни, подшипники, болты, гайки, шкивы и др. Полиуретаны в зависимости от исходных веществ, применяемых при получении, могут обладать различными свойствами, быть твердыми, эластичными и даже термореактивными. Полиэтилентерефталат - сложный полиэфир, в России выпускается под названием лавсан, за рубежом - майлар, терилен. Из лавсана изготавливают шестерни, кронштейны, канаты, ремни, ткани, пленки и др. Термостойкие пластики. Ароматический полиамид - фенилон. Из фенилона изготавливают подшипники, зубчатые колеса, детали электрорадиопередатчиков. Полибензимидазолы являются ароматическими гетероциклическими полимерами. Обладают высокой термостойкостью, хорошими прочностными показателями. Применяют в виде пленок, волокон, тканей специальных костюмов. Термореактивные пластмассы Пластмассы с порошковым наполнителями (волокниты, асбоволокниты, стеловолокниты). Волокниты представляют собой композиции из волокнистого наполнителя в виде очесов хлопка, пропитанного фенолоформальдегидными связующими. Применяют для изготовления деталей работающих на изгиб и кручение. Асбоволокниты содержат наполнителем асбест, связующее фенолоформальдегидная смола. Из него получают кислотоупорные аппараты, ванны и трубы. Слоистые пластмассы (гетинакс, текстолит, древеснослоистые пластики, асботесолит) являются силовыми конструкционными о поделочными материалами. Листовые наполнители придают пластику анизотропность. Материалы выпускают в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали. Газонаполненные пластмассы Представляют собой гетерогенные дисперсные системы, состоящие из твердой и газообразной фаз. Пенопласты - материалы с ячеистой структурой, в которых газообразные наполнители изолированы друг от друга и от окружающей среды тонкими слоями полимерного связующего. Обладают хорошей плавучестью и высокими теплоизоляционными свойствами. Применяют для теплоизоляционных кабин, контейнеров, приборов, холодильников, рефрижераторов, труб и т.п. Мягкие и эластичные пенопласты применяют для амортизаторов, мягких сиденей, губок. Сотопласты Изготавливают из тонких листовых материалов. Для них характерны достаточно высокие теплоизоляционные, электроизоляционные свойства и радиопрозрачность. Применяют в виде заполнителей многослойных панелей в авиа- и судостроении для несущих конструкций. Резиновые материалы
Общие сведения Резиной называется продукт специальной обработки (вулканизации) каучука и серы с различными добавками. Резина отличается от других материалов высокими эластическими свойствами, которые присущи каучуку - главному исходному материалу резины. Для резиновых материалов характерна высокая стойкость к истиранию, газо- и водонепроницаемость, химическая стойкость, электроизолирующие свойства и небольшая плотность. Резины общего назначения К группе резин общего назначения относятся вулканизаторы неполярных каучуков - НК, СКБ, СКС, СКИ. НК - натуральный каучук. Для получения резины НК вулканизируют серой. Резины на основе НК отличаются высокой эластичностью, прочностью, водо- и газонепроницаемостью, высокими электроизоляционными свойствами. НК - плотность каучука 910-920кг/м3, предел прочности 24-34МПа, относительное удлинение 600-800%, рабочая температура 80-130°С. СКБ - синтетический каучук бутадиеновый. Каучуки вулканизируют аналогично натуральному каучуку. СКБ - плотность каучука 900-920кг/м3, пр
|
|||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 1332; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.14.85 (0.015 с.) |