Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дефекты кристаллического строения металлов (дислокация) и их влияние на прочность.

Поиск

В кристаллах всегда имеются дефекты (несовершенства) строения, обусловленные нарушением правильного расположения атомов кристаллической решетки. Де­фекты кристаллического строения подразделяют по геометрическим признакам на точечные, линейные и поверхностные.
Атомы совершают колебательные движений возле узлов решетки, и с повышением температуры амплитуда этих колебаний увеличивается. Большинство атомов данной кристаллической решетки имеют одинаковую (среднюю) энергию и колеблются при данной температуре с одинако­вой амплитудой. Однако отдельные атомы обла­дают энергией, значительно большей средней энер­гии, и перемещаются из одного места в другое. Наиболее легко перемещаются атомы поверх­ностного слоя, выходя на поверхность. Место, где находился такой атом, называется вакансией (рис. 2, а).

Рис. 2. Дефекты в кристаллах:
а - вакансия, б — внедренный атом, в краевая линейная дислокация, г - неправильное расположение атомов на границе зерен 1 и 2
На это место через некоторое время перемещается один из атомов соседнего слоя и т. д. Таким образом вакансия перемещается в глубь кристалла. С повышением температуры ко­личество вакансий увеличивается и они чаще пе­ремещаются из одного узла в другой. В диффу­зионных процессах, протекающих в металлах, ва­кансии играют определяющую роль. К точеч­ным дефектам относят также атом, внед­ренный в междоузлие кристаллической решетки (рис. 2, б), и замещенный атом, когда место ато­ма одного металла замещается в кристалличес­кой решетке другим, чужеродным атомом. Точеч­ные дефекты вызывают местное искажение кри­сталлической решетки.
Линейные дефекты являются другим важнейшим видом несовершенства кристалличе­ской решетки, когда в результате сдвига на одно межатомное расстояние одной части решетки относительно другой вдоль какой-либо плоскости число рядов атомов в верхней части решетки на один больше, чем в нижней. В данном случае в верхней части решетки появилась как бы лиш­няя атомная плоскость (экстраплоскость). Край экстраплоскости, перпендикулярный направле­нию сдвига, называется краевой, или линейной, дислокацией (рис. 2, в), длина которой мо­жет достигать многих тысяч межатомных рас­стояний. Шириной дислокации считают расстоя­ние от центра дефекта до места решетки без ис­кажения. Ширина дислокации мала и составляет несколько атомных расстояний.
Кристаллическая решетка в зоне дислокации упруго искажена, поскольку атомы в этой зоне смещены относительно их равновесного состоя­ния. Для дислокации характерна их легкая по­движность. Это объясняется тем, что атомы, об­разующие дислокацию, стремятся переместиться в равновесное состояние. Дислокации образуют­ся в процессе кристаллизации металлов (см. гл.1, § 2), а также при пластической деформа­ции, термической обработке и других процессах.
Поверхностные дефекты представляют собой границы раздела между отдельными кри­сталлами (рис. 2, г). На границе раздела атомы кристалла расположены менее правильно, чем в его объеме. Кроме того, по границам раздела скапливаются дислокации и вакансии, а также концентрируются примеси, что еще больше наpyшает порядок расположения атомов. При этом сами кристаллы разориентированы, т. е. могут быть повернуты относительно друг друга на де­сятки градусов. Прочность металла может либо увеличиваться вследствие искажений кристалли­ческой решетки вблизи границ, либо уменьшать­ся из-за наличия примесей и концентрации де­фектов. Дефекты в кристаллах существенно вли­яют на свойства металлов.

Анизотропия кристаллов. Неодинаковость фи­зических свойств среды в разных направлениях называют анизотропией. Анизотропия кри­сталлов обусловлена различаем плотности упа­ковки атомов в решетке в различных направле­ниях. Все кристаллы анизотропны, а аморфные тела (стекло, смола) изотропны, т. е. имеют оди­наковую плотность атомов в различных направ­лениях.
Анизотропия свойств важна при использовании монокристаллов — одиночных кристаллов, частицы которых расположены единообразно по всему их объему. Монокристаллы имеют правильную кристаллическую огранку (в форме ес­тественных многогранников), анизотропны по ме­ханическим, электрическим и другим физическим свойствам.
Металлы и сплавы, применяемые в технике, обычно имеют поликристаллическую структуру, т. е. состоят из множества мел­ких и различно ориентированных кристаллов, не имеющих правильной кристаллической огранки и называемых кристаллитами (или зернами). В каждом зерне поликристалла наблюдается анизотропия. Однако вследствие разнообразной, беспорядочной ориентировки кристаллографиче­ских плоскостей в различных зернах поликристалл может иметь одинаковые свойства по раз­ным направлениям и не обнаруживать анизотро­пию (когда размеры зерен значительно меньше размеров пол и кристалла и количество их весьма велико). Это обстоятельство во многих случаях позволяет рассматривать поликристаллическое тело как подобное изотропному, несмотря на ани­зотропию свойств отдельных составляющих его зерен.
9 Упругая и пластическая деформация.

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.

Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.

При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.

Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.

Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.

Физическая природа деформации металлов

Под действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.

С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.

Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.

При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.

Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.

Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.

Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 1512; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.79.187 (0.012 с.)