Вопрос 2. Атомно- кристаллическое строение металлов. Виды кристаллических решеток.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Вопрос 2. Атомно- кристаллическое строение металлов. Виды кристаллических решеток.



Вопрос 1

В материаловедении принято рассматривать 3 уровня строения материалов: атом>молекула>фаза.

АТОМ–наименьшая частица хим. элемента обладающая его св-вами. Энергия атома может принимать лишь определённые или дискретные значения, которые называются уровнями энергии. Уровень соответствующей миним. энергии атома называют основным, остальные-возбуждённые. Совокупность уровней энергии образуют энергетический спектр атома. Большинство физических и химических св-в атома обусловлена структурой его внешних электронных связей или оболочек, в которых электроны связаны сравнительно слабо.

МОЛЕКУЛА– наименьшая частица в-ва обладающая хим. св-вами и состоящая из атомов соединённых хим. связями. Она нейтральна по заряду и как правило не имеет не спаренных или свободных электронов. Молекулярный слой возникает в результате присоединения к молекуле или отщепления от неё электронов. В состав молекул входит от двух до нескольких тысяч атомов (например:молекулы полимеров так называемые макромолекулы). Структура молекулы каждого в-ва не зависит от способа его получения. Состав молекулы характеризует брутто-формула (Н2О, СН4), которую устанавливают хим. анализом.

ФАЗА–это термодинамическое равновесное состояние в-ва, отличающееся по св-вам от других возможных равновесных состояний того же в-ва. Всякий однофазный материал характеризуется отсутствием внутренних поверхностей раздела, т.е. является гомогенным. Гетерогенный материал содержит 2 фазы.Фазовый переход– переход из одной фазы в другую при изменении внешних условий. При этом значение температуры давления, напряжённости электрических и магнитных полей или другой физической величины, при которой происходит фазовый переход называется точкой перехода.

Различают фазовые переходы 1-го и 2-го рода.

1-го рода– сопровождаются скачкообразным изменением термодинамических характеристик в-ва, при непрерывном изменении его внешних параметров. При этом в в-ве выделяется или поглощается определённое кол-во теплоты, называемой теплотой фазового перехода(например: испарения и конденсация, плавления и затвердевания).

2-ого рода– термодинамические функции в-ва не изменятся (непрерывны), а скачок испытывают производные этих функций по давлению и температуре. Теплота такого перехода равна 0.Например: переход материала из немагнитного состояния в магнитное, сопровождаемое появлением макроскопического магнитного момента.

Вопрос 2. Атомно- кристаллическое строение металлов. Виды кристаллических решеток.

Все тела в окруж. нас пространстве в твёрдом состоянии имеют кристаллическое или аморфное строение. Кристаллы– это твёрдые тела с трёхмерной периодичн. атомной структурой, имеющие при равновесных условиях образования–естественную форму правильных симметричных многогранников. Представление о строении металлов даёт элементарная ячейка, т.е. часть атомной структуры кристалла, путём трансляции которой (т.е. переноса в пространстве параллельно самой себе) можно построить всю кристалл. решётку. Рёбра элемент. Ячеек обозначают а, в, с и называют периодами кристалл. решётки или векторами трансляции. Для в-в находящихся в жидком и твёрдом состоянии характерно согласованность в расположении соседних частиц, так называемый ближний порядок, который проявляется на расстоянии сравнимый с межатомным. Кристалл. в-ва имеют дальний порядок, т.е. строгую повторяемость во всех направлениях одного и того же структурного элемента на протяжении сотен и тысяч периодов кристалл. решётки. Для металлов характерно кристаллическое строение. В кристаллических телах атомы расположены в строго определённом порядке с определённой геометрической зависимостью. Если атомы металла мысленно соединить прямыми линиями, то получим правильную геометрическую систему– пространственную кристалл. решётку. Крист. решётка– это регулярное расположение кристаллов частиц(атомов, ионов, молекул), характеризующаяся периодической повторяемостью в 3-ёх измерениях. Атомы металлов образуют крист. решётки за счёт особых металлических связей. Наиболее распространены 3 типа кристалл. решёток: 1)Объёмоцентрированная кубическая (Cr, Feα, V, Tiβ, Na, Mo, W); 2)Гранецентрированная кубическая (Ni, Cu, Al, Ag, Feγ); 3)Гексагональная плотноупакованная (Mg, Zn, Be, Cd, Tiα).

Для некоторых металлов возможно св-во менять кристаллическую решётку с изменением to.

Свойства кристаллов

Симметрия кристаллов– это когда кристалл может быть совмещён с самим собой путём поворотов, отражений, параллельных переносов и других преобразований симметрии. Некоторые кристаллич. фазы являются метастабильными (т.е. относительно устойчивые). Отсюда свойство: полиморфизм– это св-во некоторых в-в существовать в нескольких кристаллич. модификациях с разной структурой, и наоборот разные св-ва могут иметь полное подобие атомного строения и внешние формы кристаллов; изоморфизм– это св-во различных, но родственных по хим. составу в-в кристаллизоваться в одинаковых структурах при одном типе хим. связи.

Feα – ниже 911oC}ОЦК

выше 1392oC}ОЦК

Feγ – 911oC-1392oC}ГЦК

Рассматривая модель кристалл. решётки, видно, что плотность атомов в различных плоскостях не одинакова, поэтому св-ва отдельно взятого кристалла (физические, химические, механические) будут отличаться в различных направлениях. Такое различие называют анизотропией. Все кристаллы анизотропны. Аморфные тела изотропны. Степень анизотропии может быть значительной, например при исследовании монокристаллов меди временное сопротивление изменяется σb=120…360 МПа, σ=10…56%.

Технические металлы являются поликристаллическими в-вами, состоящими из множества мелких различноориентированных кристаллов, поэтому их св-ва во всех направлениях усредняются, т.е. металлы и сплавы изотропны по св-вам.

Вопрос 5. Динамическая прочность, явление запаздывания текучести, ударная вязкость материолов.

Динамическая прочность– сопротивление материала динамич. нагрузкам, т.е. нагрузкам значения, направления и точка приложения которых быстро изменялось во времени. При этом деформирование имеет специфич. черты: Запаздывание текучести– при мгновенном приложении нагрузки вызывается текучесть материала при статическом нагружении, пластическая деформация возникает не сразу, а по истечении некоторого промежутка времени, периода запаздываемой текучести. Если нагрузку снять до истечения этого периода, то остаточная деформация не возникает. Вследствие запаздывания текучести пластичные при статич. нагружении материалы могут хрупко разрушаться под действием ударных нагрузок. Для оценки склонности материала к запаздыванию текучести введена характеристика ударная вязкость, которая измеряется работой разрушения надрезанного кольца при ударном воздействии маятниковом котле.

Вопрос 11. Температурные характеристики материалов.

Жаростойкость - св-во материалов сохранять или незначительно изменять механические параметры при высоких температурах. Жароупорность - св-во материалов противостоять коррозионному воздействию газов при высоких температурах. Жаропрочность - св-во материалов длительное время сопротивляться деформированию и разрушению при высоких температурах. (для материалов работающих при t>0.3 tпл)

При темпер. от 0 … 269 С – увеличивается статическая и циклическая прочность, но снижается пластичность вязкость материала и повышается склонность к хрупкому разрушению

Хладноломкость - явление возрастания хрупкости материалов при понижении температуры. Определяют ударным испытанием образцов с надрезом. Порог хладноломкости - интервал теиператур при кот. происх. переход от вязкого к хрупкому разрушению. Т50 - величина ударной вязкости сниженая на 50%.

Теплоемкость – это отношение кол-во теплоты полученной телом к вызванному приращению температуры

Вопрос 18. Пружинные стали

Поскольку возникновение пластической деформации в пружинах не допускается, то от материала подобных изделий не требуется высокой ударной вязкости и высокой пластичности. Главное требование состоит в том, чтобы сталь имела высокий предел упругости (текучести). Это достигается закалкой с последующим отпуском при температуре в районе 300—400° С. При такой температуре отпуска предел упругости (текучести) получает наиболее высокое значение.

Пружины, рессоры и подобные им детали изготавливают из конструкционных сталей с повышенным содержанием углерода (но, как правило, все же более низким, чем у инструментальных сталей) — приблизительно в пределах 0,5-0,7 %С, часто с добавками марганца и кремния (для пружин малого сечения применяют углеродистые стали 65, 70,75, 85. Сталь 85 - s0.2=1100МПа, sв=1150МПа, d=8%, y=30%).

Для особо ответственных пружин применяют сталь 50ХФ, содержащую хром и ванадий и обладающую наиболее высокими упругими свойствами.

Термическая обработка пружин и рессор из легированных сталей заключается в закалке от 800—850° С (в зависимости от марки стали) в масле или в воде с последующим отпуском в районе 400—500° С. Иногда такой термической обработке подвергают детали конструкций большой длины и с тонкими стенками, которые должны обладать высокими пружинящими свойствами. В этом случае применяют сталь ЗОХГС.

Более часто для изготовления пружин и рессор используют легированные стали.

Стали 60С2ХФА и 65С2ВА, имеющие высокую прокаливаемость, хорошую прочность и релаксационную стойкость применяют для изготовления крупных высоконагруженных пружин и рессор. Сталь 65С2ВА - s0.2=1700МПа, sв=1900МПа, d=5%, y=20%. Когда упругие элементы работают в условиях сильных динамических нагрузок, применяют сталь с никелем 60С2Н2А (поверхностные дефекты резко снижают долговечность изделий, поэтому срок службы увеличивается упрочнением или наклепом).

Для изготовления автомобильных рессор широко применяют сталь 50ХГА, которая по техническим свойствам превосходит кремнистые стали. Для клапанных пружин рекомендуется сталь 50ХФА, не склонная к перегреву и обезуглероживанию.

Вопрос 27. Латуни.

Латунями называют медные сплавы, в которых основном легирующим элементом является цинк. В системе медь – цинк образуются шесть твердых растворов: α, β, γ, δ, ε, η. Практическое значение имеют сплавы, содержащие примерно до 42-43% Zn. При содержании цинка до 39% латуни однофазны (α-латуни), до 46% - двухфазны (α+ β’). Однофазные латуни характеризуются высокой пластичностью; β’ – фаза очень хрупкая и твердая, поэтому двухфазные латуни имеют более высокую прочность и меньшую пластичность, чем однофазные. При содержание цинка до 30% возрастает одновременно и прочность, и пластичность. Прочность увеличивается до содержание цинка около 45%, а затем уменьшается также резко, как и пластичность. Для повышения механ-их свойств и химич-ой стойкости латуни в них часто вводят легирующие элементы: алюминий, никель, марганец, кремний и т.д. Олово, марганец, алюминий увеличивают прочность и коррозионную стойкость. Кремний увеличивает твердость и прочность, улучшает литейные свойства. Маркируются буквой Л и числом, указывающим среднее содержание меди. Например, Л80 – латунь, содержащая 80% Cu и 20% Zn. В марках латуней сложного состава имеются буквы, соответствующие введенным легирующим элементам. Например, в латуни ЛМцС58-2-2 содержится 58% Cu; 2% Mn и 2% Pb (остальное Zn). Отрицательным свойством латуней, содержащих более 20% Zn и особенно более 30% Zn, является их склонность к растрескиванию при вылеживании во влажной атмосфере, содержащей следы аммиака. Никеливые латуни ЛН65-5 – высокие механические свойства, хорошо обрабатываются давлением. Оловянные ЛО90-1, ЛО70-1 – повышенная коррозионная стойкость в морской и пресной воде, хорошо обрабатываются имеют высокие антифрикационые свойства. Свинцовые ЛС 63-3 – повышенные антифрикационые свойства и обрабатываемость резанием.

Бронзы:

- это сплавы меди, олова, железа, берилия, алюминия и меди, название бронзам дают по названию основных легирующих элементов (оловянистые бронзы, железистые бронзы). Бронзы широко используются как антифрикционные сплава. Бронзы делятся на: оловянистые, алюминиевые, кремнистые, бериливые. Структура оловянистых бронз вследствии ликвидации не всегда соответствует равновесной диаграмме сплавов. Бронзы условно разделяют: 1) оловянные; 2) безоловянные (специальные). Оловянный – высоко стойкие, морозостойкие и немагнитные. Недостатки: склонность к образованию газовых пор в отливках, невысокая герметичность изделия. малая красностойкость. В зависимости от технологии изготовления: деформируемые и литейные. Деформируемые оловянистые бронзы содержат до 8% олова, применяются для пружин и деформируемых деталей, до 6% олова, обладают высокими антифрикациоными свойствами и достаточной прочностью. Обычно в алюминиевых бронзах содержится 9 – 11 % алюминия. Эти бронза обычно легированы не только алюминием, но и железом , никелем, марганцем.

Маркировка: - деформированная: БрОЦС5-5-5 (бронза; олово, цинк, свинец по 5%, остальное медь); - литая БрО5У5С5. БрАЖН10-4-4 (10% Al, 4% Fe, 4%Ni) и БрАЖН11-6-6 (11% Al, 6% Fe, 6%Ni) являются наиболее прочными из всех алюминиевых бронз.

Мех. свойства бронзы:

- зависят от состава и концентрации легирующего элемента

- оловянистые бронзы σВ = 150-450Мпа, твёрдость до 600Мпа, Δl = от 3 до 70%

- алюмине-железистые бронзы: Бр АЖ 9-4 (алюминия 9%, железа 4%, остальное медь). НВ = 1800Мпа, если добавить никель, твёрдость ещё более повысится.

Области применения:

Из алюминиевых бронз изготавливают зубчатые колеса, сальники, детали турбин, электропроводные пружины. Они хорошо работают в условиях износа, повышенного давления и даже повышенных температурах.

- изготовление втулок, вкладыши, припой для пайки изделий.

Вопрос 28. Mg и его сплавы.

Магний является самым легким конструкционным металлом – его плотность составляет 1,7 г/см3, температура плавления 650 0С. К существенным недостаткам относится их малая коррозионная стойкость. Положительным качеством является их отличная обрабатываемость режущим инструментом с получением чистой поверхности.Их широко применяют в тех случаях, когда масса изделия имеет большое значение. Детали из магниевых сплавов изготавливают обработкой давлением, а также литьем. Марки деформируемых магниевых сплавов обозначают буквами МА, литейные – МЛ и порядковым номером. Особенностью сплавов магния является малая скорость диффузии находящихся в нем легирующих элементов и их ликвация.

Mg сплавы делятся на деформируемые (МА 5) и литейные (МЛ 9)

Основное свойство Mg сплавов – их высокая ударная прочность после термической обработки. Прочность достигает 400 МПа, что и обеспечивает высокую ударную прочность. Поэтому Mg сплавы применяются в приборостроении. Недостаток: низкая коррозионная стойкость, склонность к газонасыщенности и воспламенению.

1) Mg-Al сплавы (МА5)Прочность растет с увеличением содержания Al. Но свыше 10% не добавляют, т.к. резко снижается пластичность

2) Сплавы с Zn относятся к высокопрочным. Термическая обработка затруднена, т.к. в связи с низкой температурой плавления процесс растворения интермиталидов идет медленно и требуется длительная выдержка.

Литейные сплавы: (МА5) Грубая крупнозернистая структура. Которую можно измельчить, модифицированием мрамором или мелом

Деформирмируемые сплавы: МА1 – 1,3-2,5% Mn применяют в изгот-ии сварных бензо- и маслопроводах, поковки. МА2 – 0,15-0,5 % Mn, 0,2-0,8% Zn, 3-4 % Al применяют: штампованные, кованные детали для работы до 200 градусов.

Литейные сплавы: Мл2 – 1-2% Mn применяют в изгот-ии слабонагруженных деталей несложной формы.

Вопрос 35. Отжиг 1 рода.

Отжигом называют термообработку, направленную на получение в металлах равновесной структуры. Любой отжиг включает в себя нагрев до определенной температуры, выдержку при этой температуре и последующее медленное охлаждение. Цель отжига – уменьшить внутренние напряжения в металле, уменьшить прочностные свойства и увеличить пластичность. Отжиг делят на отжиг 1 рода и 2 рода.

Отжиг 1 рода – это такой вид отжига, при котором не происходит структурных изменений, связанных с фазовыми превращениями.

Отжиг 1 рода в свою очередь разделяют на 4 группы:

1. Гомогенизация – отжиг, направленный на уменьшение химической неоднородности металлов, образующейся в результате рекристаллизации. В отличие от чистых металлов, все сплавы после кристаллизации характеризуются неравновесной структурой, т.е. их химический состав является переменным как в пределах одного зерна, так и в пределах всего слитка.

В процессе отжига на гомогенизацию происходит постепенное растворение неравновесных интерметаллидных фаз, которые могут образоваться в результате кристаллизации с большой скоростью. При последующем медленном охлаждении после отжига такие неравновесные фазы больше не выделяются. Поэтому после гомогенизации металл обладает повышенной пластичностью и легко поддается пластической деформации.

2. Рекристаллизационный отжиг. Для снятия эффекта упрочнения применяют рекристаллизационный отжиг, т.е. нагрев металла до температур выше начала кристаллизации, выдержку с последующим медленным охлаждением. Температура нагрева зависит от состава сплава. Для чистых металлов температура начала рекристаллизации tp=0,4Тпл, ºК, для обычных сплавов порядка 0,6Тпл, для сложных термопрочных сплавов 0,8Тпл. Продолжительность такого отжига зависит от размеров детали и в среднем составляет от 0,5 до 2 часов. В процессе рекристаллизационного отжига происходит образование зародышей новых зерен и последующий рост этих зародышей. Постепенно старые деформированные зерна исчезают. Количество дефектов в кристаллической решетке уменьшается, наклеп устраняется, и металл возвращается в исходное состояние.

3. Отжиг для снятия внутренних напряжений.Внутренние напряжения в металле могут возникать в результате различных видов обработки: термические напряжения, образовавшиеся в результате неравномерного нагрева, различной скорости охлаждения отдельных частей детали после горячей деформации, литья, сварки, шлифовки и резания. Могут быть структурными, т.е. появившиеся в результате структурных превращений, происходящих внутри детали в различных местах с различной скоростью. Этот отжиг проводится при температурах ниже температуры рекристаллизации: tотж=0,2-0,3Тпл º К. Повышенная температура облегчает скольжение дислокаций и, под действием внутренних напряжений, происходит их перераспределение, т.е. из мест с повышенным уровнем внутренних напряжений дислокации перемещаются в области с пониженным уровнем. Происходит как бы разрядка внутренних напряжений. При нормальной температуре этот процесс будет длиться в течение нескольких лет. Увеличение температуры резко увеличивает скорость разрядки, и продолжительность такого отжига составляет несколько часов.

Вопрос 38. Способы закалки.

В зависимости от вида фазовых превращений, происходящих в сплаве при закалке, различают закалку с полиморфным превращением и закалку без полиморфного превращения.

Вопрос 44. Цементация

Процесс насыщения поверхности изделия углеродом. Цементация повышает тверость и износостойкость поверхности детали при сохранении вязкости сердцевины. Различают твердую и газовую цементацию. При твердой цементации в ящик заполненный науглеражущим веществом(карбюризатором) и специальными добавками размещают детали. В качестве карбюризатора используют древесный уголь. пРи температуре процесса(900-950 градусах Цельсия) кислород воздуха, расположенного между кусочками угля взаимодействует с углеродом с образования окиси углерода СО. Именно СО, а не СО2 т.к. процесс идет при недостаточном колличестве кислорода. При контакте окиси углерода с металической поверхностью происходит реакция диссоциации при которой окись углерода распадается на СО2+реакция диссоциации с образованием активных атомов углерода, кат. диффунд. 2СО2->СО2

поверхность металла. В качестве добавок к карбюризатору используют соли: СО3, Na2CO3, K2CO3, являющиеся дополнительным поставщиком окиси углерода.

Процесс твердой цементации является мало производительным и занимает не один десяток часов. Это связанно с тем, что значительная часть времени тратится на прогрев ящика до заданной температуры т.к. корбюризатор является не теплопроводным веществом.

Эффективнее способ газовой цементации.

В этом случае и/з камеру зазмещенные в ней детали пропускают науглераживающий газ или СО или, что чаще предельные углеводороды(метан, этан, пропан, гексан, октан, нонан, декан). В производстве чаще свего используется природный газ, содержащий до 93-95% группы СН4. При цементации тщательно регломентируют подачу газа. В случае избытка количества газа на поверхности детали оседает слой сажи т.к. не весь углерод может усваиваться поверхностью детали. Температуру цементации не выбирают ниже АС1 т.к. ферит практически не растворяет углерод. Процесс осуществляют выше АС3, а именно при температурах 900–930 градусах Цельсия. После цементации структура по сечению детали не однородна. На ковкости структура соответствующая структуре заэвтектоидной стали. Далее структура эвтектоидной стали(перлит), а затем структура доэтектоидной стали(Ф+П). За толщину слоя принимают толщину заэвт. эвт. и половину доэвт. зоны. Окончательные свойства формируются после термической обработки. Термообработка обеспечивает измельчение зерна неизбежно выросшего в процессе выдержки при высокой температуре. Устранение цементной сетки.

Термообработка заключается в закалке с температурой 820–840 градусах Цельсия и низком отпуске при температурах 60–64HRC, легированных 57–60HRC.

Маленькая твердость после ХТО легированных сталей обусловлена повышенным содержанием в структуре аустенита остаточного, для утранения которого после закалки, иногда проводят обработку холодом.

Для цементироания применяют стали с низким содержанием углерода 0.15–0.25%.

 

 

 

Вопрос 45.Азотирование.

Это насыщение поверхности детали азотом.

Азотирование проводят в специальных газовых печах, куда помещают детали, а затем подается диссоциированный аммиак, т.е. проходит распад аммиака. Диссоциация аммиака проходит в специальных автоклапанах в присутствии катализатора. Это нужно для того, чтобы в печь поступали атомы азота.

Температура азотирование 520-550º С, т.е. она не высокая, так как растворимость азота в феррите вполне достаточная. Поэтому азотирование можно проводить после окончаний термообработки, например, после закалки и высокого отпуска. Это позволяет подвергать азотированию уже готовые детали, прошедшие обработку резанием, шлифованием, т.е. не требуется оставлять припуски на окончательную обработку как при цементации.

Низкая температура азотирования не позволяет получить глубокого насыщения поверхностей. Поэтому обычная толщина азотированного слоя 0,3 – 0,5 мм, а продолжительность процесса в 2-3 раза превышает продолжительность цементации.

Для повышения эффекта износостойкости стали подвергаемые азотированию обычно содержат Cr,Al, Mo. Эти элементы, взаимодействуя с азотом, образуют собственные ингредиенты, которые дополнительно повышают твердость и износостойкость поверхности.

38Х2МЮА – нитролоид.

По сравнению с цементацией азотирование имеет преимущество и недостатки.

Преимущества:

Проводится после окончательной термообработки, поэтому не требует дополнительных припусков.

Более высокая твердость и износостойкость.

Более высокая устойчивая прочность деталей.

Более высокая коррозионная стойкость.

Более высокая рабочая температура 400-450º С.

Недостатки:

Более тонкий слой.

Более длительный процесс, требующий сложного оборудования, производительность меньше.

Аллитирование.

Применяют для стальных и никелевых деталей с целью повышения жаростойкости поверхности, образуются Al2O3. Аллитирование можно проводить двумя способами:

Аллитирование из порошковой смеси

В этом случае берут порошок FeAl. Нагревают до температуры 1050-1150º С и выдерживают от двух до двадцати часов. Хлор взаимодействует с Al (ALCL3) и за счет образования этого хлористого Al происходит перенос Аl на поверхность из порошка.

Погружение детали в расплав Аl, выдержка в ванне и затем нагрев до рабочей температуры аллитирования.

Хлорирование.

Хлорирование применяют с разными целями:

Для малоуглеродистых сталей с содержанием С<0,4%, с целью повышения коррозионной стойкости поверхности. В этом случае Сr переходит в твердый раствор и если его концепция превышает 13%, то сталь становится коррозионно-стойкой.

Глубина насыщения Сr зависит от эксплуатационных характеристик деталей.

%С > 0,41% - средне или высоко углеродная сталь. В этом случае хромирование применяют для повышения твердости и износостойкости поверхности.

Увеличение твердости происходит за счет образования в сталях карбидов хрома, которые и повышают служебные свойства деталей: Сч23С6.

В отличие от гальваники, ХТО называют твердым хромированием.

Берут порошок FeСr, добавляют Al2O3 и NH4Cl. При хромировании можно получить толщину до 0,2 мм. Мягкое хромирование используется для повышения коррозионной стойкости труб, фланцев.

Титанирование.

Насыщение Ti повышает коррозионную стойкость и повышает кавитационную стойкость.

Насыщение Ti проводят из порошковых смесей FeTi.

Цинкование.

Защищает от коррозии. Насыщение Zn проводят погружением детали в расплав. Температура расплавленного цинка в ванной 350-550º С. Время пребывания в расплавленной ванне 1-10 минут. Толщина цинкового покрытия 10-30 микрон.

Вопрос 49. Пластмассы.

- материалы, полученные на основе природных или синтетических полимеров, способных под воздействием t-ры и давления формироваться в изделие сложной формы, а затем устойчиво сохранять форму.

Компоненты пластмасс:

- связующее вещество – служит для связки, сохранения других компонентов; применяют синтетические смолы; некоторые пластмассы состоят из одного связующего вещества (полиэтилен, оргстекло);

- наполнители – добавляют в кол-ве 40-70% с целью повышения мех. свойств, снижения стоимости изделия; часто служат порошково деревянная мука, графит, окись кремния, часто используют волокнистые материалы (хлопчатобумажные нити), иногда листовые материалы (бумага, ткань, шпон);

- пластификаторы – добавляются в кол-ве 10-20% для уменьшения хрупкости и улучшения формуемости; служат эфиры, полимеры с гибкими молекулами;

- отвердители – добавляют в кол-ве нескольких % для отвердвления термопластов; служат перекиси и спец.амины.

- спец. добавки – красители, ускорители, смазочные, отвердители, замедлители.

Пластмассы подразделяют на 2-е группы: термопласты (обратимые), термореактивы (необратимые).

Термопласты:

Полиэтилен: - продукт полимеризации этилена; высокие антикоррозионные и диэлектрические свойства; применяется ввиде труб плёнок и т.д., хороший изолятор.

Полистирол: - продукт полимеризации стирола; свойства как у полиэтилена; но имеет большую прочность и твёрдость; раковины, детали холодильников, прищепки.

Органическое стекло: - полимер с высокой светопрозрачностью, значительной прочностью, и малой плотностью; легко формуется, склеивается, сваривается, обрабатывается резанием; изготавливают стёкла часов, авто, самолётов, детали различных приборов.

Термореактивы:

Текстолит: - наполнителем служит хлопчатобумажная ткань; изготавливают подшипники, шестерни, прокладки, электропанели; высокая стойкость к вибрации, хороший диэлектрик.

Гетинакс: - прессованные листы, состоящие из нескольких слоёв пропиточной и изоляционной бумаги, пропитанной специальными смолами; применения и свойства аналогичны текстолиту.

Стеклопластик: - содержит стекловолокнистый наполнитель и смолу; иногда вместо стекловолокна используют лавсан; применяют в судостроении, машиностроении, при изготовлении различных ёмкостей и облицовочных материалов.

Вопрос 1

В материаловедении принято рассматривать 3 уровня строения материалов: атом>молекула>фаза.

АТОМ–наименьшая частица хим. элемента обладающая его св-вами. Энергия атома может принимать лишь определённые или дискретные значения, которые называются уровнями энергии. Уровень соответствующей миним. энергии атома называют основным, остальные-возбуждённые. Совокупность уровней энергии образуют энергетический спектр атома. Большинство физических и химических св-в атома обусловлена структурой его внешних электронных связей или оболочек, в которых электроны связаны сравнительно слабо.

МОЛЕКУЛА– наименьшая частица в-ва обладающая хим. св-вами и состоящая из атомов соединённых хим. связями. Она нейтральна по заряду и как правило не имеет не спаренных или свободных электронов. Молекулярный слой возникает в результате присоединения к молекуле или отщепления от неё электронов. В состав молекул входит от двух до нескольких тысяч атомов (например:молекулы полимеров так называемые макромолекулы). Структура молекулы каждого в-ва не зависит от способа его получения. Состав молекулы характеризует брутто-формула (Н2О, СН4), которую устанавливают хим. анализом.

ФАЗА–это термодинамическое равновесное состояние в-ва, отличающееся по св-вам от других возможных равновесных состояний того же в-ва. Всякий однофазный материал характеризуется отсутствием внутренних поверхностей раздела, т.е. является гомогенным. Гетерогенный материал содержит 2 фазы.Фазовый переход– переход из одной фазы в другую при изменении внешних условий. При этом значение температуры давления, напряжённости электрических и магнитных полей или другой физической величины, при которой происходит фазовый переход называется точкой перехода.

Различают фазовые переходы 1-го и 2-го рода.

1-го рода– сопровождаются скачкообразным изменением термодинамических характеристик в-ва, при непрерывном изменении его внешних параметров. При этом в в-ве выделяется или поглощается определённое кол-во теплоты, называемой теплотой фазового перехода(например: испарения и конденсация, плавления и затвердевания).

2-ого рода– термодинамические функции в-ва не изменятся (непрерывны), а скачок испытывают производные этих функций по давлению и температуре. Теплота такого перехода равна 0.Например: переход материала из немагнитного состояния в магнитное, сопровождаемое появлением макроскопического магнитного момента.

Вопрос 2. Атомно- кристаллическое строение металлов. Виды кристаллических решеток.

Все тела в окруж. нас пространстве в твёрдом состоянии имеют кристаллическое или аморфное строение. Кристаллы– это твёрдые тела с трёхмерной периодичн. атомной структурой, имеющие при равновесных условиях образования–естественную форму правильных симметричных многогранников. Представление о строении металлов даёт элементарная ячейка, т.е. часть атомной структуры кристалла, путём трансляции которой (т.е. переноса в пространстве параллельно самой себе) можно построить всю кристалл. решётку. Рёбра элемент. Ячеек обозначают а, в, с и называют периодами кристалл. решётки или векторами трансляции. Для в-в находящихся в жидком и твёрдом состоянии характерно согласованность в расположении соседних частиц, так называемый ближний порядок, который проявляется на расстоянии сравнимый с межатомным. Кристалл. в-ва имеют дальний порядок, т.е. строгую повторяемость во всех направлениях одного и того же структурного элемента на протяжении сотен и тысяч периодов кристалл. решётки. Для металлов характерно кристаллическое строение. В кристаллических телах атомы расположены в строго определённом порядке с определённой геометрической зависимостью. Если атомы металла мысленно соединить прямыми линиями, то получим правильную геометрическую систему– пространственную кристалл. решётку. Крист. решётка– это регулярное расположение кристаллов частиц(атомов, ионов, молекул), характеризующаяся периодической повторяемостью в 3-ёх измерениях. Атомы металлов образуют крист. решётки за счёт особых металлических связей. Наиболее распространены 3 типа кристалл. решёток: 1)Объёмоцентрированная кубическая (Cr, Feα, V, Tiβ, Na, Mo, W); 2)Гранецентрированная кубическая (Ni, Cu, Al, Ag, Feγ); 3)Гексагональная плотноупакованная (Mg, Zn, Be, Cd, Tiα).

Для некоторых металлов возможно св-во менять кристаллическую решётку с изменением to.

Свойства кристаллов

Симметрия кристаллов– это когда кристалл может быть совмещён с самим собой путём поворотов, отражений, параллельных переносов и других преобразований симметрии. Некоторые кристаллич. фазы являются метастабильными (т.е. относительно устойчивые). Отсюда свойство: полиморфизм– это св-во некоторых в-в существовать в нескольких кристаллич. модификациях с разной структурой, и наоборот разные св-ва могут иметь полное подобие атомного строения и внешние формы кристаллов; изоморфизм– это св-во различных, но родственных по хим. составу в-в кристаллизоваться в одинаковых структурах при одном типе хим. связи.

Feα – ниже 911oC}ОЦК

выше 1392oC}ОЦК

Feγ – 911oC-1392oC}ГЦК

Рассматривая модель кристалл. решётки, видно, что плотность атомов в различных плоскостях не одинакова, поэтому св-ва отдельно взятого кристалла (физические, химические, механические) будут отличаться в различных направлениях. Такое различие называют анизотропией. Все кристаллы анизотропны. Аморфные тела изотропны. Степень анизотропии может быть значительной, например при исследовании монокристаллов меди временное сопротивление изменяется σb=120…360 МПа, σ=10…56%.

Технические металлы являются поликристаллическими в-вами, состоящими из множества мелких различноориентированных кристаллов, поэтому их св-ва во всех направлениях усредняются, т.е. металлы и сплавы изотропны по св-вам.



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.232.99 (0.017 с.)