Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Явище електромагнітної індукції. Закон Фарадея. Правило Ленца

Поиск

Як показав Ерстед магнітне поле породжується провідниками зі струмом. Виникає питання: чи не можна створити електричний струм за допомогою магнітного поля? Це питання експериментальним шляхом розв’язав М.Фарадей в 1837 році. Він встановив, що в замкненому контурі виникає електричний струм, якщо площину охоплену контуром, перетинає змінний магнітний потік, тобто, якщо Цей струм Фарадей назвав індукційним (наведеним), а саме явище – явищем електромагнітної індукції. Зрозуміло, що в цій ситуації виникнення струму є вторинним ефектом; первинним є виникнення електрорушійної сили індукції.

Отже, явищем електромагнітної індукції називається виникнення електрорушійної сили в контурі при зміні магнітного потоку через площину, обмежену контуром. Величина е.р.с. індукції дорівнює швидкості зміни магнітного потоку (закон Фарадея): . (4.40)

Знак “–” в законі Фарадея відповідає правилу Ленца: індукційний струм завжди має такий напрямок, щоб своїм магнітним полем протидіяти зміні магнітного потоку, який викликає появу цього струму. Правило Ленца відображає закон збереження енергії стосовно явища електромагнітної індукції: якби індукований магнітний потік, всупереч правилу Ленца, сприяв зростанню швидкості зміни індукуючого потоку, то це призвело б до збільшення струму, в результаті чого збільшився б магнітний потік, знову збільшився б індукційний струм, і так – до нескінченості. Зрозуміло, що такий «саморозгін» суперечить закону збереження енергії.

Індуктивність контура. Явище самоіндукції. Енергія магнітного поля

Нехай по замкненому контуру протікає струм силою І. Індукція магнітного поля, створеного цим струмом, пропорційна до сили струму (, див.§4.2). Величина ж магнітного потоку пропорційна до індукції магнітного поля (, див. §4.6). Отже, магнітний потік через площину контура пропорційний до сили струму в контурі: або , де L – коефіцієнт пропорційності між силою струму в контурі і магнітним потоком, що перетинає цей контур, який називається індуктивністю контура. Одиницею вимірювання індуктивності в СІ є Генрі: . Індуктивність контура залежить від його розмірів і форми, а також від магнітної проникливості навколишнього середовища. Як приклад, знайдемо вираз для індуктивності довгого соленоїда – котушки довжиною і площею поперечного перерізу S, що складається з N витків дроту. При проходженні через соленоїд струму І в ньому виникає магнітне поле , напрямлене вздовж осі соленоїда (див. 4.21). Тоді кожен виток соленоїда перетинає магнітний потік , а повний магнітний потік через соленоїд . Оскільки – число витків на одиниці довжини соленоїда, то .(4.42)Прирівнюючи (4.41) і (4.42), отримаємо для індуктивності соленоїда , (4.43)де – магнітна проникливість матеріалу осердя.

Якщо сила струму в контурі змінюється, то змінюється і магнітний потік через контур. Згідно з законом Фарадея (4.40) зміна магнітного потоку викликає появу е.р.с. індукції, яка в даному випадку називається е.р.с. самоіндукції.

Отже, явище самоіндукції полягає у виникненні е.р.с. самоіндукції у контурі, по якому тече змінний електричний струм. Вираз для е.р.с. самоіндукції одержимо, підставивши (4.41) в (4.40): . (4.44)

Якщо в контурі немає феромагнітних матеріалів, для яких , то і (4.44) спрощується: , (4.45)тобто е.р.с. самоіндукції пропорційна до швидкості зміни сили струму в контурі.

Магнітне поле в речовині

Всі речовини складаються з атомів, в яких по замкнених траєкторіях рухаються електрони. Орбітальний рух електрона можна розглядати як коловий струм (мікрострум) з магнітним моментом

– частота обертання електрона, r – радіус орбіти, – одиничний вектор позитивної нормалі до площини орбіти. Магнітний момент атома дорівнює векторній сумі магнітних моментів усіх його електронів (магнітним моментом ядра можна знехтувати):

В залежності від наявності чи відсутності (рівності нулю) магнітного моменту, всі атоми поділяються на діамагнітні, для яких і парамагнітні, для яких .

Будь-яка речовина, як система атомів, в зовнішньому магнітному полі намагнічується, тобто набуває магнітного моменту. Для кількісного опису цього явища вводять вектор намагніченості – фізичну величину, що дорівнює магнітному моменту одиниці об’єму магнетика: . (4.50)

Встановлено, що вектор намагніченості пропорційний до вектора напруженості намагнічуючого поля: , (4.51)

де безрозмірний коефіцієнт пропорційності c називається магнітною сприйнятливістю речовини.

Таким чином, магнітне поле в речовині складається з зовнішнього (намагнічуючого) поля , створеного макрострумами, і власного поля , створеного мікрострумами. В діамагнітних речовинах власне поле напрямлене проти зовнішнього, а в парамагнітних – напрямки зовнішнього і власного полів співпадають. За принципом суперпозиції магнітна індукція поля в речовині

Безрозмірна величина називається магнітною проникністю речовини. Тоді остаточно запишемо

(4.52)

Тепер дамо елементарне пояснення природи діа- і парамагнетизму. У діамагнетиків сумарний магнітний момент атомів у відсутності зовнішнього поля дорівнює нулю. Досліди показують, що магнітного моменту не має атом гелію. Цей факт можна пояснити, припустивши, що два електрони атома гелію обертаються навколо ядра по орбітах рівних радіусів, з рівними за величиною швидкостями, але в протилежних напрямках. Тому їхні магнітні моменти взаємно скомпенсовані і результуючий магнітний момент атома дорівнює нулю. Зовнішнє магнітне поле, впливаючи на рух електронів атома, індукує в ньому магнітний момент, який за правилом Ленца (див. §4.8.) напрямлений проти . З розглянутої моделі слід очікувати, що діамагнетиками являються і інші речовини, атоми яких мають парне число електронів у зовнішній оболонці. Дійсно, до класу діамагнетиків належать інертні гази (He, Ne, Ar, Xe), а також ряд інших речовин – Bi, H2O тощо. У діамагнетиків .

Парамагнетиками є речовини, атоми або молекули яких у відсутності зовнішнього поля мають відмінний від нуля магнітний момент ; наприклад, якщо вони мають непарне число електронів в атомі. Тепловий рух робить орієнтацію магнітних моментів атомів хаотичною, тому у відсутності зовнішнього поля парамагнетик не намагнічений . В зовнішньому полі магнітні моменти атомів орієнтуються вздовж поля (див.§4.1.), тому парамагнетик намагнічується в напрямку зовнішнього поля. Для парамагнетиків . Магнітна сприйнятливість парамагнетика в слабких полях і при досить високих температурах обернено пропорційна до температури (закон Кюрі): , де С – стала Кюрі, що залежить від роду парамагнетика.

І діа- і парамагнетики належать до слабомагнітних речовин, оскільки для обох Але існують сильномагнітні речовини – феромагнетики, у яких магнітна проникливість досягає . Крім основного представника – заліза, до феромагнетиків належать Co, Ni, ряд рідкісноземельних елементів та сплавів на їх основі. Відома наступна властивість феромагнетиків: при температурі, що називається точкою Кюрі (залежить від речовини), феромагнетик стрибком втрачає свої феромагнітні властивості і переходить у парамагнітний стан. Це означає, що атом феромагнетика подібний до атома парамагнетика відмінністю від нуля магнітного моменту, а феромагнітні властивості притаманні не окремому атому, а кристалу феромагнітної речовини в цілому при температурах, нижчих від точки Кюрі.

Крім великої магнітної проникливості феромагнетики відрізняються від слабомагнітних речовин рядом властивостей:

1) на відміну від парамагнетиків, феромагнетики намагнічуються до насичення вже в слабких полях;

2) магнітна проникливість феромагнетика залежить від напруженості намагнічуючого поля (рис. 4.21): спочатку швидко зростає із збільшенням Н, досягає максимуму, а потім спадає, прямуючи до одиниці в сильних полях.

3) залежність B(H) (рис. 4.22) має гістерезисний характер.

При розміщенні розмагніченого феромагнетика в зовнішньому полі залежність В(Н) описується спочатку кривою 0-1. При зменшенні Н до нуля В(Н) змінюється по кривій 1-2; тобто має місце відставання зміни індукції від зміни напруженості. Це явище називається магнітним гістерезисом. Магнітна індукція, що зберігається у феромагнетику після зникнення зовнішнього поля (при Н = 0), називається залишковою магнітною індукцією (постійні магніти). Щоб розмагнітити феромагнетик, потрібно прикласти зовнішнє поле протилежного напрямку з напруженістю , яка називається коерцитивною силою. При подальшому збільшенні напруженості відбувається намагнічування протилежного напрямку по кривій 3-4. Ділянка 4-5-6 знову відповідає розмагнічуванню. Надалі процес перемагнічування відбувається по замкненій кривій 6-1-2-3-4-5-6 (рис. 4.22), яка називається петлею гістерезису. В залежності від величини Нс усі феромагнітні матеріали поділяють на жорсткі (рис.4.22, а) і м’які (рис.4.22, б).

Властивості феромагнетиків пояснюються наявністю в них областей, які у відсутності зовнішнього поля спонтанно намагнічені до насичення; ці області називаються доменами. Розміри доменів ~ () м. Розташування і намагніченість доменів такі, що у відсутності зовнішнього поля сумарна намагніченість дорівнює нулю. В зовнішньому полі вектори намагніченості доменів частково повертаються в напрямку поля і феромагнетик намагнічується.

 

 

Закон Кулона: сила взаємодії двох точкових нерухомих електричних зарядів прямо пропорційна добуткові цих зарядів, обернено пропорційна квадратові відстані між ними і напрямлена вздовж прямої, яка сполучає ці заряди:

Силовою лінією електричного поля називається така лінія, в кожній точці якої вектор напруженості є дотичним до самої лінії.

Електричною індукцією (електричним зміщенням) називається векторна фізична величина, яка пропорційна до напруженості, не залежить від діелектричних властивостей середовища і визначається рівністю: .

Елементарним потоком вектора напруженості електричного поля називається скалярна величина, рівна скалярному добуткові вектора напруженості електричного поля і одиничного вектора нормалі на площу елементарної поверхні:

Теорема Остроградського-Гауса для напруженості електричного поля:потік вектора напруженості електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею, поділеній на діелектричну проникність середовища: .

Теорема Остроградського-Гауса для індукції електричного поля: потік вектора індукції електричного поля через довільну замкнену поверхню рівний алгебраїчній сумі електричних зарядів, охоплених цією поверхнею.

Теорема про циркуляцію вектора напруженості електричного поля: циркуляція вектора напруженості електростатичного поля по замкнутому контуру рівна нулю.

Потенціалом електричного поля називається скалярна фізична величина рівна потенціальній енергії одиничного позитивного точкового заряду вміщеного в дану точку поля: .

Еквіпотенціальна поверхня - це поверхня однакового потенціалу.

Електричним диполем називається система двох однакових за модулем різнойменних зарядів.

Плечемдиполя називається вектор напрямлений від негативного заряду до позитивного.

Дипольним моментом називається векторна фізична величина, рівна добутку позитивного заряду на плече диполя: .

Провідниками називаються тіла, які мають вільні електричні заряди, тобто такі заряджені частинки, які можуть вільно переміщатись по об’єму провідника.

Електроємністю відокремленого провідника називається фізична величина рівна зарядові, який необхідно надати провідникові, щоб змінити його потенціал на одиницю.

Електроємністю конденсатора називається фізична величина, рівна зарядові, який необхідно перенести з однієї обкладки на іншу, щоб різниця потенціалів між ними змінилась на одиницю:

Електричним струмом називається впорядковане переміщення електричних зарядів.

Силою струму називається скалярна фізична величина, рівна зарядові, який проходить через поперечний переріз провідника за одиницю часу

Закон Ома для однорідної ділянки кола: сила струму в провіднику прямо пропорційна прикладеній напрузі і обернено пропорційна опору провідника.

Електрорушійною силою називається фізична величина, рівна роботі сторонніх сил по переміщенню одиничного позитивного заряду по замкнутому електричному колу.

Закон Джоуля-Ленца в інтегральній формі: кількість теплоти, яка виділяється в провіднику при проходженні електричного струму, прямо пропорційна квадрату сили струму, опору провідника і часу проходження струму.

Закон Джоуля-Ленца в диференціальній формі: питома теплова потужність струму прямо пропорційна питомому опору провідника і квадратові густини струму.

Магнітне поле – це особливий вид матерії, що створюється рухомими електричними зарядами (струмами) і діє на рухомі заряди, провідники зі струмом та постійні магніти.

Закону Біо-Савара-Лапласа:

Циркуляцією вектора по замкненому контуру називається інтеграл де - вектор елементу довжини контура, напрямлений вздовж обходу контура, – проекція на дотичну до контура, α – кут між та .

Сила Ампера або в скалярній формі ,

Сила Лоренца ,

Теорема Гауса для магнітного поля: магнітний потік через будь-яку замкнену поверхню дорівнює нулю: .(4.36)

магнітний потік через площину контура пропорційний до сили струму в контурі: або ,де L – коефіцієнт пропорційності між силою струму в контурі і магнітним потоком, що перетинає цей контур, який

називається індуктивністю контура

Згідно з законом Фарадея зміна магнітного потоку викликає появу е.р.с. індукції, яка в даному випадку називається е.р.с. самоіндукції.

Властивості феромагнетиків пояснюються наявністю в них областей, які у відсутності зовнішнього поля спонтанно намагнічені до насичення; ці області називаються доменами.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 507; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.249.191 (0.011 с.)