Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Глава 1. Электрическая цепь и ее основные законы↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Глава 1. ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЕ ОСНОВНЫЕ ЗАКОНЫ Основные сведения о строении вещества и физической природе электричества Электронной теорией строения атома вещества установлено, что все вещества, как простые, так и сложные, состоят из молекул, а молекулы из атомов. Наименьшая частица вещества, которая сохраняет его свойства, называется молекулой. Молекула — это химическая комбинация двух или более атомов. Атом — это наименьшая частица элемента, которая сохраняет химические характеристики элемента. Химический элемент — составная часть вещества, построенная из одинаковых атомов. Простые вещества — медь, алюминий, цинк, свинец и др. — состоят из одинаковых атомов данного вещества. Молекулы сложных веществ состоят из нескольких атомов различных химических элементов. Например, поваренная соль (хлористый натрий) состоит из атомов хлора и атомов натрия. Молекулы воды содержат атомы водорода и атомы кислорода. Атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны сгруппированы в центре атома и образуют ядро. Протоны заряжены положительно, нейтроны заряда не имеют. Электроны расположены и вращаются на оболочках на различных расстояниях от ядра. Атомы различных элементов отличаются друг от друга. Поскольку существует свыше 100 различных элементов, то существует и свыше 100 различных атомов. Самым простым атомом является атом водорода: он имеет только один электрон, расположенный на первой электронной оболочке. Атом гелия (рис. 2, а) имеет два электрона, расположенных на первой оболочке (К), атом кислорода (рис. 2, б) — два на первой и шесть на второй (всего восемь, расположенных на оболочках К и L). Внешняя оболочка называется валентной и количество электронов, которое она содержит, называется валентностью. Чем дальше от ядра валентная оболочка, тем меньшие силы притяжения со стороны ядра испытывает каждый валентный электрон. Таким образом, потен-циальная возможность атома терять увеличивается. Именно валентными электронами определяется способность атомов данного элемента вступать в химические связи друг с другом и с атомами других элементов, а также электропроводность различных материалов. Физическая природа электричества. Многие электрические явления объясняются на основе электронной теории строения атома. Согласно этой теории, если электроны валентной оболочки получат достаточно энергии от внешних сил, то они могут покинуть атом и стать свободными электронами, произвольно перемещаясь от атома к атому. В этом случае они перестают быть нейтральными. Атомы, потерявшие часть своих электронов, становятся положительно заряженными ионами. Атомы, получившие избыточные электроны, становятся отрицательно заряженными ионами. Если в каком-либо теле накопятся электроны или ионы, то говорят, что в теле накопилось электричество. Такое тело становится электрически заряженным и приобретает электрические свойства. Эти свойства есть по сути дела проявление электрических сил, действующих между электронами и ядрами атомов. Электрические заряды. Количество электричества, содержащееся в заряженном теле, называется электрическим зарядом. Заряды бывают двух знаков: положительные (обозначаются знаком «+») и отрицательные (обозначаются знаком «—»). В Международной системе единиц СИ электрические заряды, т. е. количество электричества, измеряют в Кулонах (Кл). Если по проводу прошло 6,29·1018 электронов, то говорят, что по проводу прошло количество электричества, равное 1 Кл. При взаимодействии электрических зарядов (электрически заряженных тел) (рис. 2) между ними возникают электрические силы притяжения или отталкивания. Законы Кирхгофа Значения токов и напряжений для сложных разветвленных цепей можно находить при помощи законов Кирхгофа. Первый закон Кирхгофа устанавливает зависимость между токами для узлов электрической цепи, к которым подходит несколько ветвей. Согласно этому закону алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю: ΣI=0
При этом токи, направленные к узлу, берут с одним знаком (например, положительным), а токи, направленные от узла, - с про-тивоположным знаком (отрицатель-ным). Например, для узла А (рис. 17,а) I1 + I2+ I3- I4- I 5 = 0 Преобразуя это уравнение, получим, что сумма токов, направленных к узлу электрической цепи, равна сумме токов, направленных от этого узла: I1 + I2+ I3= I4+ I 5 Второй закон Кирхгофа устанавливает зависимость между э. д. с. и напряжением в замкнутой электрической цепи. Согласно этому закону во всяком замкнутом контуре алгебраическая сумма э. д. с. равна алгебраической сумме падений напряжения на сопротивлениях, входящих в этот контур: ΣE = Σ IR
При составлении формул, характеризующих второй закон Кирхгофа, значения э. д. с. E и падений напряжений IR считают положительными, если направления э. д. с. и токов на соответствующих участках контура совпадают с произвольно выбранным направлением обхода контура. Если же направления э. д. с. и токов на соответствующих участках контура противоположны выбранному направлению обхода, то такие э. д. с. и падения напряжения считают отрицательными. Рассмотрим в качестве примера электрическую цепь, в которой имеются два источника с электродвижущими силами Е1 и Е2 (рис. 18,а), внутренними
сопротивлениями и два приемника с сопротивлениями R1 и R2. Применяя второй закон Кирхгофа для этой цепи и выбирая направление ее обхода по часовой стрелке, получим: Е1 - Е2 = IR01 + IR02 + IR1 + IR2
При этом э. д. с. E1 и ток I совпадают с выбранным направлением обхода контура и считаются положительными, а э. д. с. Е2, противоположная этому направлению, считается отрицательной. Если в электрической цепи э. д. с. источников электрической энергии при обходе соответствующего контура направлены навстречу друг другу (см. рис. 18, а), то такое включение называют встречным. В этом случае на основании второго закона Кирхгофа ток I = (Е1 - Е2)/(R1 + R2 + R01+R02). Если же э. д. с. источников электрической энергии имеют по контуру одинаковое направление (рис. 24, б), то такое включение называют согласным и ток I = (Е1 +Е2)/(R1 + R2 + R01+R02) В некоторых случаях такое включение недопустимо, так как ток в цепи резко возрастает. Если в электрической цепи имеются ответвления (рис. 18,в), то по отдельным ее участкам проходят различные токи I1 и I2. Согласно второму закону Кирхгофа (Е1 - Е2) = I1R01 + I1R1 - I2R2 -I2R02 - I2R3+ I1R4
При составлении этого уравнения э. д. с. Е1 и ток I1 считаются положительными, так как совпадают с принятым направлением обхода контура, э. д. с. Е2 и ток I2 — отрицательными.
11. Последовательное, параллельное и смешанное соединения резисторов. Значительное число приемников, включенных в электрическую цепь (электрические лампы, электронагревательные приборы и др.), можно рассматривать как некоторые элементы, имеющие определенное сопротивление. Это обстоятельство дает нам возможность при составлении и изучении электрических схем заменять конкретные приемники резисторами с определенными сопротивлениями. Различают следующие способы соединения резисторов (приемников электрической энергии): последовательное, параллельное и смешанное. Последовательное соединение. При последовательном соединении нескольких резисторов конец первого резистора соединяют с началом второго, конец второго - с началом третьего и т. д. При таком соединении по всем элементам последовательной цепи проходит один и тот же ток I. Последовательное соединение приемников поясняет рис. 19,а. Заменяя лампы резисторами с сопротивлениями R1, R2 и R3 получим схему, показанную на рис. 19,б.Если принять, что в источнике R0 = 0, то для трех последова-тельно соединенных резисторов согласно второму Кирхгофа можно написать: E = IR1 +IR2 +IR3 = I(R1+ R2+ R3) = IRобщ;
где: Rобщ = R1+ R2+ R3 Следовательно, эквивалентное сопротивление последовательной цепи равно сумме сопротивлений всех последовательно соединенных резисторов. Напряжение U на зажимах источника равно сумме напряжений на каждом из последовательно включенных резисторов. Соединять последовательно целесообразно только приемники с одинаковыми сопротивлениями. В противном случае приложенное напряжение источника электрической энергии распределяется между ними неравномерно и отдельные приемники могут оказаться под недопустимо высоким для них напряжением. При последовательном соединении приемников изменение сопротивления одного из них влечет за собой изменение напряжения на других связанных с ним приемниках. При обрыве электрической цепи в одном из приемников в остальных прекращается ток. При параллельном соединении приемники включаются между двумя точками электрической цепи, образуя параллельные ветви (рис. 20,а). Заменяя лампы резисторами с сопро-тивлениями R1, R2 и R3, получим схему, показанную на рис. 20,б. При параллельном соединении ко всем резисторам приложено одинаковое напряжение U. Поэтому согласно закону Ома: I1 = U/R1, I2 =U/R2 , I3 = U/R3 Ток в неразветвленной части цепи согласно первому закону Кирхгофа I=I1+I2 +I3 или I= U/R1 + U/R2 + U/R3 = U (1/ R1 + 1/ R2+ 1/ R3) = U/Rэкв Следовательно, эквивалентное сопротивление рассматриваемой цепи при параллельном соединении трех резисторов определяется формулой 1/ Rэкв = 1/ R1 + 1/ R2+ 1/ R3 При увеличении числа параллельно включаемых резисторов результирующее сопротивление уменьшается. При параллельном соединении приемников все они находятся под одним и тем же напряжением и режим работы каждого из них не зависит от остальных. Это означает, что ток, проходящий по какому-либо из приемников, не будет оказывать существенного влияния на другие приемники. При всяком выключении или выходе из строя любого приемника остальные приемники остаются включенными. Смешанным соединением называется такое соединение, при котором часть резисторов включается последовательно, а часть — параллельно. Эквивалентное сопротивление цепи при смешанном соединении обычно определяют методом преобразования, при котором сложную цепь последовательными этапами преобразовывают в простейшую. Тепловое действие тока При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник: Q =I2Rt.
Допустимая сила и плотность тока. Превращение электрической энергии в тепловую нашло широкое применение в технике. Однако в электрических машинах и аппаратах, в проводах превращение электроэнергии в тепло не только бесполезно, но и ухудшает работу их работу, а в некоторых случаях может вызвать повреждения и аварии. Каждый проводник в зависимости от условий, в которых он находится, может пропускать, не перегреваясь, ток силой, не превышающей некоторое допустимое значение. Для определения токовой нагрузки проводов часто пользуются понятием допустимой плотности токаJ (сила тока I, приходящаяся на 1 мм2 площади s поперечного сечения проводника): J=I/s Допустимая плотность тока зависит от материала провода (медь или алюминий), вида применяемой изоляции, условий охлаждения, площади поперечного сечения и пр. Превышение допустимого значения силы тока в проводнике может вызвать чрезмерное повышение температуры, в результате этого изоляция проводов электродвигателей, генераторов и электрических сетей перегревается, обугливается и даже горит, что может привести к короткому замыканию и пожару. Для того чтобы предотвратить недопустимое увеличение силы тока, во всех электрических установках должны приниматься меры для автоматического отключения от источников электрической энергии тех приемников или участков цепи, в которых имеет место перегрузка или короткое замыкание. Для этой цели в технике широко используют плавкие предохранители и автоматические выключатели. Нагрев в переходном сопротивлении. Повышенный нагрев проводника, как следует из закона Джоуля — Ленца, может происходить не только вследствие прохождения по нему тока большой силы, но и вследствие повышения сопротивления проводника. Поэтому для надежной работы электрических установок большое значение имеет значение сопротивления в месте соединения отдельных проводников. При неплотном электрическом контакте и плохом соединении проводников (рис. 22) электрическое сопротивление в этих местах (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла. В результате место неплотного соединения проводников будет представлять собой опасность в пожарном отношении, а значительный нагрев может привести к полному выгоранию плохо соединенных проводников. Во избежание этого при соединении проводов на э. п. с. концы их тщательно зачищают, облуживают и впаивают в кабельные наконечники, которые надежно прикрепляют болтами к зажимам электрических машин и аппаратов. Специальные меры принимают и для уменьшения переходного сопротивления между контктами электрических аппаратов, осуществляющих включение и выключение тока.
Электромагнитная индукция. При пересечении проводником силовых линий магнитного поля в нем возникает или, как говорят, индуцируется э. д. с. Это явление называется электромагнитной индукцией. Возникновение э.д.с. объясняется действием сил магнитного поля на находящиеся в проводниках свободные электроны. Свободные электроны под влиянием этих сил начнут двигаться вдоль проводника (рис. 37). В результате этого движения на одном конце проводника накопятся свободные электроны и возникнет отрицательный электрический заряд, а на другом конце ввиду недостатка электронов появится положительный заряд. Разность потенциалов на концах проводника численно равна индуцированной в проводнике э.д.с. Индуцирование э.д.с. в проводнике происходит независимо от того, включен ли он в какую-либо электрическую цепь или нет. Если присоединить концы этого проводника к какому-либо приемнику электрической энергии, то под влиянием разности потенциалов по замкнутой цепи потечет электрический ток. Значение индуцированной э. д. с. определяется законом электромагнитной индукции Фарадея. Он формулируется следующим образом. Индуцированная э. д. с. е прямо пропорциональна индукции магнитного поля В, длине проводника l и скорости его перемещения v в направлении, перпендикулярном силовым линиям поля, e = Blv. Если проводник перемещается вдоль силовых линий поля, т. е. как бы скользит по ним, то э.д.с. в нем не возникает. Направление индуцированной э. д. с. определяют правилом правой руки. Правую руку следует расположить так, чтобы магнитные силовые линии входили в ладонь, а большой палец совместить с направлением движения проводника (т. е. направлением его скорости v), то вытянутые четыре пальца укажут направление индудированной э.д.с. е (рис. 38). Пользуясь этим правилом, легко убедиться в том, что при изменении направления движения проводника будет изменяться и направление индуцированной э.д.с. Индуцировать э.д.с. в неподвижном проводнике можно перемещением самого магнитного поля или изменением магнитного потока. При этом, чем быстрее изменяется магнитный поток, тем больше индуцированная э.д.с.
-изменение тока в катушке 1 (рис. 39, а), в магнитном поле которой расположена вторая катушка 2. При этом непрерывно изменяется магнитный поток, охватываемый второй катушкой, и в ней, а также и в первой катушке, будут индуцироваться электродвижущие силы е1 и е2. Этот способ используют в трансформаторах; -вращение магнитного поля, созданного постоянными магнитами или электромагнитами 3, относительно неподвижных катушек 4 (рис. 39, б). При этом непрерывно изменяется магнитный поток, пронизывающий каждую катушку, и в них индуцируются э. д. с. е. Такой способ используют в машинах переменного тока; -вращение витков 6 или катушек в постоянном магнитном поле, созданном неподвижными постоянными магнитами 5 или электромагнитами (рис. 39, в). При этом непрерывно изменяется магнитный поток, охватываемый каждым витком или катушкой, вследствие чего в них индуцируется э. д. с. Этот способ используют в электрических машинах постоянного тока.
Вихревые токи. Изменяющийся магнитный поток способен индуцировать э. д. с. не только в проводах или витках катушек, но и в массивных стальных сердечниках, кожухах и других металлических деталях электротехнических установок. Эти э. д. с. являются причиной появлений индуцированных токов, которые действуют в массивных металлических деталях, замыкаясь накоротко в их толще. Такие токи получили название вихревых. Например, при изменении магнитного потока, созданного катушкой 1 (рис. 40, а), в ее стальном сердечнике 2 индуцируются вихревые токи, замыкающиеся в плоскости, перпендикулярной силовым линиям магнитного поля. Вихревые токи возникают также в сердечниках 3 якорей и роторов электрических машин при вращении их в магнитном поле (рис. 40, б). Природа вихревых токов такая же, как и токов, индуцированных в обычных проводах или катушках. Благодаря очень малому сопротивлению массивных проводников вихревые токи даже при небольшой индуцированной э. д. с. достигают очень больших значений, вызывая чрезмерное нагревание этих проводников. Способы уменьшения вредного действия вихревых токов. В электрических машинах и аппаратах вихревые токи обычно нежелательны, так как они вызывают нагрев металлических сердечников, создают потери энергии (так называемые потери от вихревых токов), снижают к. п. д. электрических машин и аппаратов и оказывают согласно правилу Ленца размагничивающее действие. Для уменьшения вредного действия вихревых токов применяют два основных способа. Сердечники электрических машин и аппаратов выполняют из отдельных стальных листов 1 (рис. 41) толщиной 0,35—1,0 мм, изолированных один от другого слоем изоляции 2 (лаковой пленкой, окалиной, образующейся при отжиге листов, и пр.). Благодаря этому преграждается путь распространению внхревых токов и уменьшается поперечное сечение каждого отдельного проводника, через которое протекают эти токи, что приводит к уменьшению силы тока.
Самоиндукция. Э.д.с., индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции. Эта э. д. с. возникает при всяком изменении тока: при замыкании и размыкании электрических цепей, а так же при изменении тока в цепи. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Направление э. д. с. самоиндукции определяется по правилу Ленца. Э.д.с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию, и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию. Если же ток в катушке не изменяется, то э.д.с. самоиндукции не возникает. В электрической цепи (рис.42, а), состоящей из резистора с сопротивлением R и катушки К, ток i создается совместным действием напряжения U источника и э.д. с. самоиндукции eL индуцируемой в катушке. При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции eL (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 42, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются eL и i. Точно так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. eL (см. штриховую стрелку) постепенно уменьшается.
Индуктивность. Способность различных проводников (катушек) индуцировать э.д.с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн). Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции eL может во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 43, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции. Большая э. д. с. самоиндукции способствует также возникновению электрической дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 43, б) образующаяся э.д.с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в течение некоторого времени э.д.с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи.
Взаимоиндукция. Взаимоиндукцией называется явление индуцирования э. д. с. в проводнике или катушке при изменении магнитного потока, создаваемого другим проводником (катушкой). Индуцируемая таким образом э. д. с. ем носит название э. д. с. взаимоиндукции.
Контрольные вопросы: 1. Какие существуют способы усиления магнитных полей? 2. Что такое магнитная индукция, магнитный поток, напряженность магнитного поля? 3. Каковы основные характеристики ферромагнитных материалов? 4. В каких случаях магнитное поле создает механические силы и как они определяются? 5. Что такое индуцированная э.д.с. и как определяется ее значение и направление? 6. Что представляют собой вихревые токи и какие существуют способы уменьшения их вредного действия? 7. Что такое э. д. с. самоиндукции и взаимоиндукции?
Глава 1. ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ И ЕЕ ОСНОВНЫЕ ЗАКОНЫ
|
||||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 480; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.201.71 (0.01 с.) |