Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формулы доходности финансовых операций

Поиск

Если в формулах наращения по процентной и учетной ставке принять срок n = 1 году, то получим, что

.

Если n 1 году, .

Эти формулы принято называть формулами доходности или эффективности по простой ставке процентов и учетной ставке соответственно.

Задача 6.

Предприятие получило кредит на 1 год в размере 100 млн. с условием возврата 150 млн.

Найти доходность операции для кредитора в виде процентной и дисконтной (учетной) ставок.

К = 100 млн., S = 150 млн., n = 1 год. I =?, d =?

 

Решение:

 

Дисконтная ставка всегда меньше процентной, ибо она учитывает время более жестко.

 

Иногда размер дисконта в контрактах фиксируется за весь срок ссуды в виде доли (или процента) от суммы погасительного платежа. Таким образом, уровень процентной ставки задается в неявном виде. Выведем формулы, с помощью которых можно вычислить значения этих ставок.

Пусть S- размер погасительного платежа (сумма ссуды к концу срока), dn – доля этого платежа, определяющая величину дисконта за весь срок ссуды.

К = S(1 – dn) – реально выдаваемая ссуда в момент заключения договора.

Тогда ;

.

 

Задача 7.

Кредитор и заемщик договорились, что из суммы кредита, выданного на 200 дней, сразу удерживается дисконт в размере 25% указанной суммы. Требуется определить цену кредита в виде простой годовой учетной ставки d и годовой простой ставки i. Год полагать равным 365 дней.

Решение:

 

Простые переменные ставки

 

В кредитных соглашениях иногда предусматриваются изменяющиеся во времени процентные ставки.

Если i1, i2,… ik – последовательные во времени простые ставки,

а n1, n2,… nk – периоды, в течение которых применяются соответствующие ставки, тогда наращенная сумма определяется следующим образом:

Задача 8

Контракт предусматривает следующий порядок начисления процентов: первый год – ставка 16%, в каждый последующем полугодии ставка повышается на 1%. Определить множитель наращения за 2,5 года.

Дано:

n1=1 год, i1 =16%,

n2=1/2 года, i2 =(16+1)% = 17%,

n3=1/2 года, i3 =(17+1)% = 18%,

n4=1/2 года, i4 =(18+1)% = 19%,

Общий срок начисления процентов 1+1/2+1/2+1/2=2,5 года.

Множитель наращения =

Иначе, за 2б5 года начальный капитал увеличился в 1,43 раза.

 

Реинвестирование

 

В практике при реинвестировании средств в краткосрочные депозиты иногда прибегают к неоднократному последовательному повторению наращения по простым процентам в пределах заданного общего срока, т.е. к реинвестированию средств, полученных на каждом этапе наращения. (Напоминает наращение по сложным процентам, но только напоминает!)

В этом случае наращенная сумма для всего срока составит:

k – количество реинвестиций.

Если периоды начисления и ставки не изменяются во времени, то формула реинвестирования примет вид:

, k – количество реинвестиций.

Задача 9.

Сумму в 100 тысяч рублей положили 1 января на месячный депозит под 20% годовых. Каковой будет наращенная сумма, если операция повторяется 3 раза? Расчет сделать по точным и банковским процентам.

Решение:

По условию задачи депозит в 100 тысяч рублей реинвестируется трижды по простым процентам.

По точным процентам:

(Помните, что в январе 31 день, в феврале – 28 дней, в марте – 31 день!)

По банковским процентам при условии, что в каждом месяце по 30 дней:

Модуль 2. Сложные проценты

 

Наращение по сложным процентам

 

В средне и долгосрочных операциях, если проценты не выплачиваются сразу после их начисления, а присоединяются к сумме долга, то для наращения используются сложные проценты.

Сложные проценты отличаются от простых процентов базой начисления. Если в простых процентах она остается постоянной на весь срок начисления, то в сложных при каждом начислении процентные деньги присоединяются к первоначальной базе. Говорят, идет капитализация процентов.

Формула наращения по сложным процентам, если проценты начисляются один раз в году, имеет вид

, где i - годовая (номинальная) процентная ставка, n - число лет начисления,

- множитель наращения по сложным процентам.

Задача 1.

Сумма, равная 800 тыс. руб., инвестируется на 3 года под 80% годовых. Найти наращенную сумму и сумму процентов за этот срок, используя простые и сложные проценты.

Решение:

1.Сложные проценты:

 

 

2. Простые проценты:

 

 

За 3 года 800 тыс. руб. увеличились в 5,832 раза по сложным процентам и только в 3,4 раза по простым процентам.

Задача 2.

Сумма, равная 800 тыс. руб., инвестируется на 3 месяца под 80% годовых. Найти наращенную сумму и сумму процентов за этот срок, используя простые и сложные проценты.

Решение:

1.Сложные проценты:

 

 

2. Простые проценты:

 

Итак, сложные проценты работают лучше, если срок n больше 1 года и простые проценты лучше работают (дают большее наращение) внутри года. Если срок начисления процентов 1 год, простые и сложные проценты дают одинаковый результат.

Задача 3. Найти сумму долга в 15 млн. руб. через 8 месяцев, 320 дней, 2 года, 10 лет по сложным годовым ставкам 5% и 8%.

Решение:

.

; .

 

Сумма долга зависит от процентной ставки и числа лет начисления. Сравните суммы по годам и по процентным ставкам. (Сумма долга растет с увеличением и процентной ставки, и числа лет начисления).

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 697; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.97.1 (0.007 с.)