Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные принципы и этапы разработки машин

Поиск

Основные принципы и этапы разработки машин

Процесс разработки машин имеет сложную, разветвлённую неоднозначную структуру и обычно называется широким термином проектирование – создание прообраза объекта, представляющего в общих чертах его основные параметры.

Методы проектирования:

- прямые аналитические методы синтеза (разработаны для ряда простых типовых механизмов);

- эвристические методы проектирования – решение задач проектирования на уровне изобретений (например, алгоритм решения изобретательских задач);

- синтез методами анализа – перебор возможных решений по определенной стратегии (на пример, с помощью генератора случайных чисел – метод Монте-Карло) с проведением сравнительного анализа по совокупности качественных и эксплуатационных показателей (часто используются методы оптимизации - минимизация сформулированной разработчиком целевой функции, определяющей совокупность качественных характеристик изделия);

- системы автоматизированного проектирования или САПР – компьютерная программная среда моделирует объект проектирования и определяет его качественные показатели, после принятия решения - выбора проектировщиком параметров объекта, система в автоматизированном режиме выдает проектную документацию;

- другие методы проектирования.

Основные этапы процесса проектирования.

1. Осознание общественной потребности в разрабатываемом изделии.

2. Техническое задание на проектирование (первичное описание).

3. Анализ существующих технических решений.

4. Разработка функциональной схемы.

5. Разработка структурной схемы.

6. Метрический синтез механизма (синтез кинематической схемы).

7. Статический силовой расчет.

8. Эскизный проект.

9. Кинетостатический силовой расчет.

10. Силовой расчет с учетом трения.

11. Расчет и конструирование деталей и кинематических пар (прочностные расчеты, уравновешивание, балансировка, виброзащита).

12. Технический проект.

13. Рабочий проект (разработка рабочих чертежей деталей, технологии изготовления и сборки).

14. Изготовление опытных образцов.

15. Испытания опытных образцов.

16. Технологическая подготовка серийного производства.

17. Серийное производство изделия.

Проектирование машин выполняют в несколько стадий, установленных ГОСТ 2.103-68. Для единичного производства это:

1. Разработка технического предложения по ГОСТ 2.118-73.

2. Разработка эскизного проекта по ГОСТ 2.119-73.

3. Разработка технического проекта по ГОСТ 2.120-73.

4. Разработка документации для изготовления изделия.

5. Корректировка документации по результатам изготовления и испытания изделия.

Стадии проектирования при серийном производстве те же, но только корректировку документации приходится повторять несколько раз: сначала для опытного экземпляра, затем для опытной партии, затем по результатам изготовления и испытаний первой промышленной партии.

 

В любом случае, приступая к каждому этапу конструирования, как и вообще к любой работе, необходимо чётко обозначить три позиции:

Исходные данные – любые объекты и информация, относящиеся к делу ("что мы имеем?").

Цель – ожидаемые результаты, величины, документы, объекты ("что мы хотим получить?").

Средства достижения цели – методики проектирования, расчётные формулы, инструментальные средства, источники энергии и информации, конструкторские навыки, опыт ("что и как делать?").

 

Требования к машинам и критерии их качества

В развитии машиностроения очень важны следующие современные направления: увеличение мощности и производительности машины; быстроходность и равномерность хода; повышение коэффициента полезного действия; автоматизация рабочих циклов машин; точность работы машины; стандартизация и взаимозаменяемость деталей и узлов; удобство и безопасность обслуживания; компактность; эстетичность внешнего вида машины. Детали и узлы машин должны быть работоспособными, надежными, технологичными, экономичными и эстетичными.

Поскольку человеку свойственно хотеть всего и сразу, то требования к машинам многообразны и часто противоречивы, однако их можно условно разделить на основные взаимосвязанные группы:

- технологические требования;

- экономические требования;

- эксплуатационные требования.

Качество машины, т.е. её максимальное соответствие всем требованиям невозможно без неустанного внимания инженера на всех стадиях "жизни" машины.

Качество закладывается на стадии проектирования, обеспечивается на стадии производства и поддерживается в процессе эксплуатации.

Степень соответствия требованиям характеризуют критерии качества – некие конкретные параметры, т.е. измеряемые или вычисляемые величины.

Однако известно, что полное удовлетворение всех требований – абсолютно невыполнимая задача, поэтому всегда приходится идти на компромисс, обозначая главные требования и обеспечивая соответствующие им критерии качества. Отметим поэтому лишь основные требования к деталям и машинам.

ТЕХНОЛОГИЧНОСТЬ – изготовление изделия при минимальных затратах труда, времени и средств, при полном соответствии своему назначению. Технологичность деталей обеспечивается: формой их простейших поверхностей (цилиндрической, конической и др.), удобной для обработки механическими и физическими методами; применением материалов, пригодных для безотходной обработки (давлением, литьем, сваркой и т. п.), и ресурсосберегающей технологии; стандартной системой допусков и посадок и другими средствами и методами.

ЭКОНОМИЧНОСТЬ – минимальная стоимость производства и эксплуатации. Экономичность деталей и узлов достигается оптимизацией их формы и размеров из условия минимума материалоемкости, энергоемкости и трудоемкости производства, за счет максимального коэффициента полезного действия в эксплуатации при высокой надежности; высокой специализацией производства и т. д. При оценке экономичности учитывают затраты на проектирование, изготовление, эксплуатацию и ремонт.

НАДЁЖНОСТЬ – свойство объекта сохранять во времени способность к выполнению заданных функций.

ЭСТЕТИЧНОСТЬ - совершенство и красота внешних форм деталей, узлов и машин существенно влияют на отношение к ней со стороны обслуживающего персонала. Оформление узлов и деталей, определяющих внешние очертания машины, должно быть красивым и отвечать требованиям художественного конструирования (дизайн). Формы наружных деталей для создания привлекательного их вида разрабатывают с участием дизайнеров. Специально подбираются цвета для окраски;

КОРРОЗИОННАЯ СТОЙКОСТЬ - для предохранения от коррозии детали изготовляют из коррозионно-стойкой стали, цветных металлов и сплавов на их основе, биметаллов — металлических материалов, состоящих из двух слоев (например, из стали и цветного металла), а также применяют различные покрытия (анодирование, никелирование, хромирование, лужение, эмалирование и покрытие красками).

СНИЖЕНИЕ МАССЫ ДЕТАЛЕЙ - в самолетостроении и некоторых других отраслях промышленности выполнение этого требования является одной из главных расчетно-конструкторских задач.

ИСПОЛЬЗОВАНИЕ НЕДЕФИЦИТНЫХ И ДЕШЕВЫХ МАТЕРИАЛОВ - это условие должно быть предметом особого внимания во всех случаях при проектировании деталей машин. Необходимо экономить цветные металлы и сплавы на их основе.

УДОБСТВО ЭКСПЛУАТАЦИИ - при проектировании необходимо стремиться, чтобы отдельные узлы и детали можно было снять или заменить без нарушения соединения смежных узлов. Все смазочные устройства должны работать безотказно, а уплотнения — не пропускать масла. Движущиеся детали, не заключенные в корпус машины, должны иметь ограждения для безопасности обслуживающего персонала.

ТРАНСПОРТАБЕЛЬНОСТЬ МАШИН, УЗЛОВ И ДЕТАЛЕЙ - возможность и удобство, их переноски и перевозки. Например, электродвигатели и редукторы должны иметь на корпусе рым-болт, за который их поднимают при перемещении. Крупные детали, корпуса гидротурбин, статоры крупных генераторов электрического тока на месте изготовления выполняют из отдельных частей, а на месте установки собирают в одно целое.

СТАНДАРТИЗАЦИЯ - установление обязательных норм на отдельные параметры, нормативно-технические характеристики и так далее. Она имеет большое экономическое значение, так как обеспечивает:

1) возможность массового производства стандартных деталей, что снижает их себестоимость;

2) возможность использования стандартного режущего и измерительного инструмента;

3) легкость замены вышедших из строя деталей при ремонте;

4) экономию труда при конструировании

5) повышение качества конструкции.

Стандартизация деталей и узлов предполагает их унификацию. Унификации – приведение изделий одинакового функционального назначения к единообразию, включающее обеспечение преемственности при изготовлении и эксплуатации. Например, механизмы подъема передвижения кранов, блоки поворота, выдвижения руки, качения и т. д. Показателем уровня стандартизации и унификации является коэффициент применяемости типоразмерам деталей, определяемый как отношение разности общего числа типоразмеров деталей и числа типоразмеров, впервые разработанных деталей к общему числу типоразмеров деталей и изделии.

Основными критериями качества машин считают:

МОЩНОСТЬ – скорость преобразования энергии;

ПРОИЗВОДИТЕЛЬНОСТЬ – объём работы (продукции, информации), выполняемой в единицу времени;

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ – доля дошедшей до потребителя энергии (мощности);

ГАБАРИТЫ – предельные размеры;

ЭНЕРГОЁМКОСТЬ - расход топлива или электричества отнесённый к объёму работы (пройденному расстоянию, произведённой продукции);

МАТЕРИАЛОЁМКОСТЬ – количество конструкционного материала машины, обычно отнесённого к единице мощности;

ТОЧНОСТЬ – способность максимально соответствовать заданному положению (скорости и т.п.);

ПЛАВНОСТЬ ХОДА – минимальные ускорения при работе машины.

 

КЛАССИФИКАЦИЯ ДЕТАЛЕЙ МАШИН

Не существует абсолютной, полной и завершённой классификации всех существующих деталей машин, т.к. конструкции их многообразны и, к тому же, постоянно разрабатываются новые.

Для ориентирования в бесконечном многообразии детали машин классифицируют на типовые группы по характеру их использования.

-ПЕРЕДАЧИ передают движение от источника к потребителю.

-ВАЛЫ и ОСИ несут на себе вращающиеся детали передач.

-ОПОРЫ служат для установки валов и осей.

-МУФТЫ соединяют между собой валы и передают вращающий момент.

-СОЕДИНИТЕЛЬНЫЕ ДЕТАЛИ (СОЕДИНЕНИЯ) соединяют детали между собой.

-УПРУГИЕ ЭЛЕМЕНТЫ смягчают вибрацию и удары, накапливают энергию, обеспечивают постоянное сжатие деталей.

-КОРПУСНЫЕ ДЕТАЛИ организуют внутри себя пространство для размещения всех остальных деталей, обеспечивают их защиту.

ПЕРЕДАЧИ

Современные машины приводятся в движение главным образом топливными и электрическими двигателями. В силу специфики законов термогазодинамики и электромагнетизма, эти двигатели более быстроходны, чем было бы удобно для человека, к тому же их скорость сложно и плохо регулируется. Возникает необходимость согласования режимов работы двигателя и исполнительного органа [6,10], с которым, собственно, и имеет дело оператор. Для этого созданы передачи.

Механическими передачами или просто передачами называются механизмы, которые преобразуют параметры движения от двигателя к исполнительным органам машины.

Механическая энергия передаётся, как правило, с преобразованием скоростей и вращающих моментов, а иногда с преобразованием вида и закона движения.

Передачи по принципу работы разделяются на:

Передачи зацеплением:

с непосредственным контактом (зубчатые и червячные);

с гибкой связью (цепные, зубчато-ременные).

Передачи трением (сцеплением трущихся поверхностей):

с непосредственным контактом поверхностей (фрикционные);

с гибкой связью (ременные).

 

 

ПЕРЕДАЧИ ЗАЦЕПЛЕНИЕМ

Передают движение с помощью последовательно зацепляющихся зубьев.

Силы в зубчатом зацеплении

НОРМАЛЬНАЯ СИЛА Fn и ЕЁ ПРОЕКЦИИ Fa, Fr, Ft..
Фактически, движение передаётся зубчатым зацеплением посредством силы нормального давления в точке контакта зубьев Fn, которая определяется, как интеграл от контактных напряжений s к по всей площади S контакта зубьев Fn = ∫s ( s к )d S.

Однако этот интеграл вычислить практически невозможно, т.к. неизвестен точный вид функции s к.

Используют другой приём: ещё неизвестную силу нормального давления Fn сначала раскладывают на три ортогональных проекции:

- осевую силу Fa, направленную параллельно оси колеса;

- радиальную силу Fr, направленную по радиусу к центру колеса;

- окружную силу Ft, направленную касательно к делительной окружности.

Легче всего вычислить силу Ft, зная передаваемый вращающий момент Мвр и делительный диаметр dw

Ft = 2MВр / dw.

Радиальная сила вычисляется, зная угол зацепления aw

Fr = Ft tgaw.

Осевая сила вычисляется через окружную силу и угол наклона зубьев b

Fa = Ft tgb.

Наконец, если необходимо, зная все проекции, можно вычислить и модуль нормальной силы Fn= ( Fa2 + Fr2 + Ft2 ) ½ = Ft / ( cosαw cosβ ).

Нормальная сила распределена по длине контактной линии, поэтому, зная длину lS контактной линии,можно вычислить удельную погонную нормальную нагрузку qn = Fn / lΣ Ft / ( b εαkε cosαw cosβ ),

где e a - коэффициент перекрытия, k e - отношение минимальной длины контактной линии к средней.

Для двух цилиндрических колёс в зацеплении одноимённые силы равны, но противоположны. Окружная сила для шестерни противоположна направлению вращения, окружная сила для колеса направлена в сторону вращения.

 

 

Расчёт зубьев на изгиб

Зуб представляют как консольную балку переменного сечения, нагруженную окружной и радиальной силами (изгибом от осевой силы пренебрегают). При этом окружная сила стремится изогнуть зуб, вызывая максимальные напряжения изгиба в опасном корневом сечении, а радиальная сила сжимает зуб, немного облегчая его напряжённое состояние.

sA = sизг А - sсжатия А.

Напряжения сжатия вычитаются из напряжений изгиба. Учитывая, что напряжения изгиба в консольной балке равны частному от деления изгибающего момента Mизг на момент сопротивления корневого сечения зуба W, а напряжения сжатия это сила Fr, делённая на площадь корневого сечения зуба, получаем:

.

Здесь b – ширина зуба, m – модуль зацепления, YH – коэффициент прочности зуба.

Иногда используют понятие коэффициента формы зуба YFH = 1 / YH.

Таким образом, получаем в окончательном виде условие прочности зуба на изгиб: sA = qn YH / m ≤ [s]FE. Полученное уравнение решают, задавшись свойствами выбранного материала.

Допускаемые напряжения на изгиб (индекс F) и контактные (индекс H) зависят от свойств материала, направления приложенной нагрузки и числа циклов наработки передачи [s]FE = [s]F KF KFC / SF; [s]HE = [s]H KH / SH.

Здесь [s]F и [s ]H – соответственно пределы изгибной и контактной выносливости; SF и SH – коэффициенты безопасности, зависящие от термообработки материалов; KFC учитывает влияние двухстороннего приложения нагрузки для реверсивных передач; KF и KH - коэффициенты долговечности, зависящие от соотношения фактического и базового числа циклов наработки. Фактическое число циклов наработки находится произведением частоты вращения колеса и срока его службы в минутах. Базовые числа циклов напряжений зависят от материала и термообработки зубьев.

Расчёт зубьев на изгиб для открытых передач (работают на неравномерных режимах с перегрузками) выполняют, как проектировочный. В расчёте задаются прочностными характеристиками материала и определяют модуль m, а через него и все геометрические параметры зубьев. Для закрытых передач излом зуба не характерен и этот расчёт выполняют, как проверочный, сравнивая изгибные напряжения с допускаемыми.

 

ПЛАНЕТАРНЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ

Планетарными называют передачи, имеющие зубчатые колёса с перемещающимися осями [8,29]. Эти подвижные колёса подобно планетам Солнечной системы вращаются вокруг своих осей и одновременно перемещаются вместе с осями, совершая плоское движение, называются они сателлитами (лат. satellitum – спутник). Подвижные колёса катятся по центральным колёсам (их иногда называют солнечными колёсами), имея с ними внешнее, а с корончатым колесом внутреннее зацепление. Оси сателлитов закреплены в водиле и вращаются вместе с ним вокруг центральной оси.

Планетарные передачи имеют ряд преимуществ перед обычными:

- большие передаточные отношения при малых габаритах и массе;

- возможность сложения или разложения механической мощности;

- лёгкое управление и регулирование скорости;

- малый шум вследствие замыкания сил в механизме.

В планетарных передачах широко применяют внутреннее зубчатое зацепление с углом aw = 30о.

Для обеспечения сборки планетарных передач необходимо соблюдать условие соосности (совпадение геометрических центров колёс); условие сборки (сумма зубьев центральных колёс кратна числу сателлитов) и соседства (вершины зубьев сателлитов не соприкасаются друг с другом).

Зубчатые колёса планетарных передач рассчитываются по тем же законам, что и колёса обычных цилиндрических передач.

 

 

ВОЛНОВЫЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ

Представляют собой цилиндрические передачи, где одно из колёс имеет гибкий венец. Этот гибкий венец деформируется генератором волн специальной некруглой формы и входит в зацепление с центральным колесом в двух зонах [17].

Идея волновых передач заключается в наличии нескольких пар зацепления, которые ещё и перемещаются по окружности, за счёт чего достигается огромное передаточное отношение (обычно U60 ¸ 300, известны конструкции с U > 1000). И это в одной ступени!

Принцип работы волновой передачи аналогичен работе планетарной передачи с внутренним зацеплением и деформируемым сателлитом.

Такая передача была запатентована американским инженером Массером в 1959 г.

Волновые передачи имеют меньшие массу и габариты, большую кинематическую точность, меньший мёртвый ход, высокую вибропрочность за счёт демпфирования (рассеяния энергии) колебаний, создают меньший шум.

При необходимости такие передачи позволяют передавать движение в герметичное пространство без применения уплотняющих сальников, что особенно ценно для авиационной, космической и подводной техники, а также для машин химической промышленности.

К недостаткам волновых передач относятся:

- ограниченные обороты ведущего вала (во избежание больших центробежных сил инерции некруглого генератора волн);

- мелкие модули зубьев (1,5 – 2 мм);

- практически индивидуальное, дорогостоящее, весьма трудоёмкое изготовление гибкого колеса и генератора.

Основные виды поломок волновых передач:

· разрушение подшипника генератора волн от нагрузки в зацеплении;

· проскакивание генератора волн при больших вращающих моментах, когда зубья на входе в зацепление упираются друг в друга вершинами;

· поломка гибкого колеса от трещин усталости (особенно при U < 80);

· износ зубьев на концах;

· пластические деформации боковых поверхностей зубьев при перегрузках.

Расчёт волновых зубчатых передач отличается от расчёта обычных зубчатых передач тем, что учитывается деформация гибкого венца и генератора [40].

За критерий работоспособности обычно принимают допускаемые напряжения смятия ; ,

где Yd – коэффициент ширины гибкого венца; d – делительный диаметр гибкого венца.

 

ЗАЦЕПЛЕНИЯ НОВИКОВА

Итак, основной недостаток зубчатых передач с эвольвентным профилем (цилиндрических, конических, планетарных, волновых) – высокие контактные напряжения в зубьях. Они велики потому, что контактируют два зуба с выпуклыми профилями. При этом площадка контакта очень мала, а контактные напряжения соответственно высоки. Это обстоятельство сильно ограничивает "несущую способность" передач, т.е. не позволяет передавать большие вращающие моменты.

ЗАЦЕПЛЕНИЕ НОВИКОВА
Решая проблемы проектирования тяжёлых тихоходных машин, таких как трактора и танки, М.Л. Новиков в 1954 году разработал зацепления, в которых выпуклые зубья шестерни зацепляются с вогнутыми зубьями колеса.

К тому же выпуклый и вогнутый профили (обычно круговые) имеют близкие по абсолютной величине радиусы кривизны. За счёт этого получается большая площадка контакта, контактные напряжения уменьшаются и появляется возможность передавать примерно в 1,4 ¸ 1,8 раза большие вращающие моменты.

К сожалению, при этом приходится пожертвовать основным достоинством эвольвентных зацеплений – качением профилей зубьев друг по другу и соответственно получить высокое трение в зубьях. Однако для тихоходных машин это не так важно.

КОЛЁСА С ОДНОЙ ЛИНИЕЙ ЗАЦЕПЛЕНИЯ С ДВУМЯ ЛИНИЯМИ ЗАЦЕПЛЕНИЯ
Рабочие боковые поверхности зубьев представляют собой круговинтовые поверхности, поэтому передачи можно называть круговинтовыми. В дальнейшем был разработан вариант передачи с двумя линиями зацепления.

В ней зубья каждого колеса имеют вогнутые ножки и выпуклые головки. Передачи с двумя линиями зацепления обладают большей несущей способностью, менее чувствительны к смещению осей, работают с меньшим шумом и более технологичны. Эти передачи успешно применяются при малых числах зубьев (Z1 < 10) и дают достаточную жёсткость шестерён при их большой относительной ширине.

Зацепления Новикова в редукторах применяют вместо перехода на колёса с твёрдыми поверхностями.

Расчёт передач Новикова на контактную прочность проводят на основе формулы Герца-Беляева, учитывая экспериментально установленный факт, что несущая способность передач при прочих равных условиях обратно пропорциональна синусу угла наклона зубьев. Кроме того, в расчёте немного завышаются допускаемые напряжения.

Передачи бывают однопарные, применяемые в редукторах общего назначения и многопарные, получаемые за счёт увеличения осевого размера и применяемые в прокатных станах, редукторах турбин и т.п.

 

Проверочный расчёт.

При расчёте на выносливость зубьев колёс по контактным напряжениям проверяют выполнение условия

,

где Eпр -приведённый модуль упругости, для стальных колёс Eпр = Eстали = =2,1105 МПа;

- вращающий момент на шестерне, Нмм, ;

здесь - кпд передачи.

- коэффициент расчётной нагрузки, ; коэффициент концентрации нагрузки найден ранее по графикам рис.2.5.

- коэффициент динамической нагрузки, находят по табл. 2.7 с понижением на одну степень точности против фактической, назначенной по окружной скорости в соответствии с рекомендациями (табл.2.6);

- делительный диаметр шестерни в среднем сечении зуба,

;

- угол зацепления, =20.

Далее проверяют зубья колёс на выносливость по напряжениям изгиба по формулам [1]:

и ,

где - окружное усилие в зацеплении, Н, ;

- коэффициент расчётной нагрузки, . Здесь , а определяют по табл. с понижением точности на одну степень против фактической.

- коэффициент формы зуба соответственно шестерни и колеса, находят по табл. в зависимости от эквивалентного числа зубьев колёс

.

 

 

ЧЕРВЯЧНЫЕ ПЕРЕДАЧИ

КОНСТРУКЦИЯ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ
Червячная передача имеет перекрещивающиеся оси валов, обычно под углом 90°. Она состоит из червяка – винта с трапецеидальной резьбой и зубчатого червячного колеса с зубьями соответствующей специфической формы.

Движение в червячной передаче преобразуется по принцпу винтовой пары. Изобретателем червячных передач считают Архимеда.

 

Достоинства червячных передач:

+ большое передаточное отношение (до 80);

+ плавность и бесшумность хода.

В отличие от эвольвентных зацеплений, где преобладает контактное качение, виток червяка скользит по зубу колеса. Следовательно, червячные передачи имеют "по определению" один фундаментальный недостаток: высокое трение в зацеплении. Это ведёт к низкому КПД (на 20-30% ниже, чем у зубчатых), износу, нагреву и необходимости применять дорогие антифрикционные материалы.

Кроме того, помимо достоинств и недостатков, червячные передачи имеют важное свойство: движение передаётся только от червяка к колесу, а не наоборот. Никакой вращающий момент, приложенный к колесу, не заставит вращаться червяк. Именно поэтому червячные передачи находят применение в подъёмных механизмах, например в лифтах. Там электродвигатель соединён с червяком, а трос пассажирской кабины намотан на вал червячного колеса во избежание самопроизвольного опускания или падения.

Это свойство не надо путать с реверсивностью механизма. Ведь направление вращения червяка может быть любым, приводя либо к подъёму, либо к спуску той же лифтовой кабины.

Передаточное отношение червячной передачи находят аналогично цилиндрической U = n1 / n2 = Z2 / Z1.

Здесь Z2 – число зубьев колеса, а роль числа зубьев шестерни Z1 выполняет число заходов червяка, которое обычно бывает равно 1, 2, 3 или 4.

Очевидно, что однозаходный червяк даёт наибольшее передаточное отношение, однако наивысший КПД достигается при многозаходных червяках, что связано с уменьшением трения за счёт роста угла трения.

 

Основные причины выхода из строя червячных передач:

r поверхностное выкрашивание и схватывание;

r излом зуба.

Это напоминает характерные дефекты зубчатых передач, поэтому и расчёты проводятся аналогично [44].

В осевом сечении червячная пара фактически представляет собой прямобочное реечное зацепление, где радиус кривизны боковой поверхности "рейки" (винта червяка) r1 равен бесконечности и, следовательно, приведённый радиус кривизны равен радиусу кривизны зуба колеса

rпр = r2.

ОСЕВОЕ СЕЧЕНИЕ ЧЕРВЯКА
ρ1 = ∞
Далее расчёт проводится по формуле Герца-Беляева. Из проектировочного расчёта находят осевой модуль червяка, а по нему и все геометрические параметры зацепления.

Особенность расчёта на изгиб состоит в том, что принимается эквивалентное число зубьев Zэкв = Z2 / cos3g, где g - угол подъёма витков червяка.

Вследствие нагрева, вызванного трением, червячные передачи нуждаются также и в тепловом расчёте. Практика показывает, что механизм опасно нагревать выше 95оС. Допускаемая температура назначается 65 oC.

Уравнение для теплового расчёта составляется из баланса тепловой энергии, а именно: выделяемое червячной парой тепло должно полностью отводиться в окружающую среду

Qвыделяемое = Qотводимое.

Решая это уравнение, находим температуру редуктора, передающего заданную мощность N

t = [ 860 N (1- η )] / [ KT S (1- Ψ )] + to.

где KT – коэффициент теплоотдачи, S – поверхность охлаждения (корпус), to – температура окружающей среды, Y – коэффициент теплоотвода в пол.

В случае, когда расчётная температура превышает допускаемую, то следует предусмотреть отвод избыточной теплоты. Это достигается оребрением редуктора, искусственной вентиляцией, змеевиками с охлаждающей жидкостью в масляной ванне и т.д.

 

ФРИКЦИОННЫЕ ПЕРЕДАЧИ

Передают движение за счёт сил трения (лат. frictio – трение). Простейшие передачи состоят из двух цилиндрических или конических роликов - катков.

СХЕМА РЕМЕННОЙ ПЕРЕДАЧИ
Главное условие работы передачи состоит в том, что момент сил трения между катками должен быть больше передаваемого вращающего момента.

Передаточное отношение цилиндрической фрикционной передачи определяют как отношение частот вращения или диаметров тел качения.

U = n1/n2=D2 /[ D1 ( 1-e )],

где ε – коэффициент скольжения (0,05 - для передач "всухую"; 0,01 – для передач со смазкой и большими передаточными отношениями).

Для конической передачи – вместо диаметров берут углы конусов.

Фрикционные передачи выполняются либо с постоянным, либо с регулируемым передаточным отношением (вариаторы).

ОСНОВНЫЕ СЕЧЕНИЯ РЕМНЕЙ
Передачи с постоянным передаточным отношением применяются редко, главным образом, в кинематических цепях приборов, например, магнитофонов и т.п. Они уступают зубчатым передачам в несущей способности. Зато фрикционные вариаторы применяют как в кинематических, так и в силовых передачах для бесступенчатого регулирования скорости. Зубчатые передачи не позволяют такого регулирования.

Достоинства фрикционных передач:

+ простота тел качения;

+ равномерность вращения, что удобно для приборов;

+ возможность плавного регулирования скорости;

+ отсутствие мёртвого хода при реверсе передачи.

Недостатки фрикционных передач:

-потребность в прижимных устройствах;

-большие нагрузки на валы, т.к. необходимо прижатие дисков;

-большие потери на трение;

-повреждение катков при пробуксовке;

-неточность передаточных отношений из-за пробуксовки.

Основными видами поломок фрикционных передач являются:

r усталостное выкрашивание (в передачах с жидкостным трением смазки, когда износ сводится к минимуму);

r износ (в передачах без смазки);

r задир поверхности при пробуксовке.

 

Поскольку всё это следствие высоких контактных напряжений сжатия, то в качестве проектировочного выполняется расчёт по допускаемым контактным напряжениям [29]. Здесь применяется формула Герца-Беляева, которая, собственно говоря, и была выведена для этого случая. Исходя из допускаемых контактных напряжений, свойств материала и передаваемой мощности определяются диаметры фрикционных колёс

Основные требования к материалам фрикционных колёс:

-высокая износостойкость и поверхностная прочность;

-высокий коэффициент трения (во избежание больших сил сжатия);

-высокий модуль упругости (чтобы площадка контакта, а значит и потери на трение были малы).

Наиболее пригодными оказываются шарикоподшипниковые стали типа ШХ15 или 18ХГТ, 18Х2Н4МА.

Разработаны специальные фрикционные пластмассы с асбестовым и целлюлозным наполнителем, коэффициент трения которых достигает 0,5. Широко применяется текстолит.

Более надёжны передачи, у которых ведущий каток твёрже, чем ведомый, т.к. тогда при пробуксовке не образуются лыски.

Применяются обрезиненные катки, однако их коэффициент трения падает с ростом влажности воздуха.

Для крупных передач применяют прессованный асбест, прорезиненную ткань и кожу.

 

 

 

РЕМЕННЫЕ ПЕРЕДАЧИ

Являются разновидностью фрикционных передач, где движение передаётся посредством специального кольцевого замкнутого ремня.

Ременные передачи применяются для привода агрегатов от электродвигателей малой и средней мощности; для привода от маломощных двигателей внутреннего сгорания.

Ремни имеют различные сечения:

а) плоские, прямоугольного сечения;

б) трапециевидные, клиновые;

в) круглого сечения;

г) поликлиновые.

Наибольшее распространение имеют плоские и клиновые ремни. Плоские ремни применяются как простейшие, с минимальными напряжениями изгиба, а клиновые имеют повышенную тяговую способность.

Клиновые ремни применяют по несколько штук, чтобы варьировать нагрузочную способность и несколько повысить надёжность передачи. Кроме того, один толстый ремень, поставленный вместо нескольких тонких будет иметь гораздо большие напряжения изгиба при огибании шкива.

В лёгких передачах благодаря закручиванию ремня можно передавать вращение между параллельными, пересекающимися, вращающимися в противоположные стороны валами. Это возможно потому, что жёсткость на кручение ремней вследствие их малой толщины и малого модуля упругости мала.

Достоинства ременных передач:

− передача движения на средние расстояния;

− плавность работы и бесшу



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 1016; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.168.68 (0.012 с.)