![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Аксиома полноты действительных чисел. Бином Ньютона.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Непреры́вность действи́тельных чи́сел — свойство системы действительных чисел, которым не обладает множество рациональных чисел. Иногда вместо непрерывности говорят о полноте системы действительных чисел [1]. Существует несколько различных формулировок свойства непрерывности, наиболее известные из которых: принцип непрерывности действительных чисел по Дедекинду, принцип вложенных отрезков Коши — Кантора, теорема о точной верхней грани. В зависимости от принятого определения действительного числа, свойство непрерывности может либо постулироваться как аксиома — в той или иной формулировке, либо доказываться в качестве теоремы[2]. Аксиома непрерывности Следующее предложение представляет собой, пожалуй, наиболее простую и удобную для приложений формулировку свойства непрерывности действительных чисел. При аксиоматическом построении теории действительного числа данное утверждение, или эквивалентное ему, непременно входит в число аксиом действительного числа [3].
Бином Ньютона Бином Ньютона — формула разложения произвольной натуральной степени двучлена (a+b)n в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» (a+b)62 и «куба суммы» (a+b)3, но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности. Чтобы не совершить ошибку и применяется формула бинома Ньютона:
6. (Принцип Архимеда). Каково бы ни было вещественное число a, существует натуральное число n такое, что a < n. Доказательство.► Допустим, что утверждение теоремы неверно, то есть существует такое число Если взять произвольные числа a ∈ A и b ∈ B, то найдется натуральное число
С другой стороны, возьмем число α−1, которое входит в класс A. Следовательно, найдется натуральное число Следствие. Каковы бы ни были числа a и b такие, что 0 < a < b, существует натуральное число n, для которого выполняется неравенство na > b. ►Для доказательства достаточно применить принцип Архимеда к числу b/a и воспользоваться свойством неравенств.◄ Это следствие имеет простой геометрический смысл - каковы бы ни были два отрезка, если на большем из них, от одного из его концов последовательно откладывать меньший, то за конечное число шагов можно выйти за пределы большего отрезка.
Теорема о существовании целой части числа.
Ограниченные множества.
Множество Множество
Множество
Верхняя и нижняя грани множеств. Ограниченное сверху числовое множество имеет бесконечно много верхних границ, среди которых особенную роль играет наименьшая из них. Число
Число
(если множество
Примечание: если если Теорема Вейерштрасса. Теорема (первая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она ограничена на нем. Доказательство: методом от противного, воспользуемся свойством замкнутости сегмента [a;b]. Из любой последовательности (xn) этого сегмента можем выделить подпоследовательность xnk, сходящуюся к x0∈[a;b]. Пусть f не ограничена на сегменте [a;b], например, сверху, тогда для всякого натуральногоn∈N найдется точка xn∈[a;b], что f(xn)>n. Придавая n значения 1,2,3,{\ldots}, мы получим последовательность (xn)точек сегмента [a;b], для которых выполнено свойство f(x1)>1,f(x2)>2,f(x3)>3,...,f(xn)>n... Последовательность (xn) ограничена и поэтому из нее по теореме можно выделить подпоследовательность(xnk), которая сходится к точке x0∈[a;b]: limk→∞xnk=x0 (1) Рассмотрим соответствующую последовательность (f(xnk)). С одной стороны f(xnk)>nk и поэтому limk→∞f(xnk)=+∞ (2), С другой стороны, учитывая определение непрерывной функции по Гейне из (1) будем иметьlimk→∞f(xnk)=f(x0) (3) Получаем равенства (2) и (3) противоречат теореме (о единственности предела). Это противоречие и доказывает справедливость теоремы. Аналогично доказывается ограниченность функции снизу. Ч.Т.Д. Замечание 1 Таким образом, если f непрерывна на [a;b], то ее множество значений ограничено и поэтому существует конечные верхняя и нижняя грань функции.c=infx∈[a;b]f(x),d=supx∈[a;b]f(x), но открыт вопрос о достижении функции своих граней. Замечание 2 Если слово сегмент в условии теоремы заменить словом интервал или полуинтервал, то теорема может и нарушиться. Пример, y=tgx,tgx∈C((−2π;2π)), но функция не ограничена на этом интервале. Теорема (вторая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она достигает на нем своих граней (т.е. непрерывная на сегменте функция принимает свое наибольшее и наименьшее значения). Доказательство: Пусть f(x)∈C([a;b]), c=infx∈[a;b]f(x), d=supx∈[a;b]f(x). По первой теореме Вейерштрасса c,d∈R. Докажем, что f достигает на [a;b] своих граней, т.е. найдутся такие точки x1,x2∈[a;b], чтоf(x1)=c,f(x2)=d. Докажем, например, существование точки x2. По определению верхней грани имеем (∀x∈[a;b])(f(x)=d). Предположим противное, т.е. точки x2, в которой f(x2)=dна [a;b], тогда на [a;b] выполняется условиеf(x)<d или d−f(x)>0. Далее введем вспомогательную функцию ϕ(x)=1d−f(x). ϕ(x) на [a;b] положительна и непрерывна (как отношение двух непрерывных на [a;b] функций и d−f(x)/=0), поэтому по первой Т. Вейерштрасса ϕ(x) на [a;b]ограничена. Это означает, что при некотором М>0 (∀x∈[a;b])(0<1d−f(x)≤M), отсюда имеем f(x)≤d−1M<d. Полученное неравенство противоречит тому, что d является верхней гранью функции f(x) на [a;b], т.е. наименьшим из верхних границ. Полученное противоречие и означает существование точки x2 такой, чтоf(x2)=d. Аналогично доказывается существование точки x1∈[a;b], такой что f(x1)=c. Следствие Если f непрерывна и непостоянна на [a;b], то образ этого отрезка [a;b] при отображении f будет так же отрезок, т.е. непрерывный непостоянный образ отрезка есть отрезок. Доказательство: В самом деле образом отрезка [a;b] при отображении f будет отрезок [с;d], где c=inf[a;b]f(x)=min[a;b]f(x), а d=sup[a;b]f(x)=max[a;b]f(x), что следует из второй теоремы Больцано-Коши и второй теоремы Вейерштрасса Ч.Т.Д.
Абсолютная величина. Абсолютными величинами называются — объем или размер события, которое изучается или явления, процесса, который выражен в соответствующих единицах измерения в конкретных условиях места и времени.Или, другими словами: это просто число без учёта знака (всегда с плюсом). Абсолютное значение величины - это само число (без знака), как например: температура, давление, скорость и т. п. Модуль - это число без направления, например: давление, скорость, сила и т. п. Абсолютная величина числа или модуль числа x — неотрицательное число, определение которого зависит от типа числа x. Обозначается: |x|. Если x вещественный, то абсолютная величина – это непрерывная кусочно-линейная функция, которая определяется так, формула:
Обобщением этого понятия есть модуль комплексного числа z=x+iy, иногда называют абсолютной величиной. Его определяют формулой:
Абсолютные величины, виды: ● Индивидуальная абсолютная величина — характеризует единицу совокупности, ● Суммарная абсолютная величина — характеризует группу единиц или всю совокупность.
8. Метрические и арифметические пространства. Метрическое пространство - это пара ( Формальное определение Метрическим пространством называется пара 1. 2. 3. Неотъемлемость приходится с помощью следующих соображений:
|
|||||||
Последнее изменение этой страницы: 2021-09-25; просмотров: 491; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.206.232 (0.009 с.) |