ТОП 10:

Задачи математической статистики



Вопрос 1.

Задачи математической статистики

 

Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.

Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании).

Предмет и методы математической статистики

Математическая статистика — раздел математики, разрабатывающий методы регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений[1]. В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы.

Выделяют описательную статистику, теорию оценивания и теорию проверки гипотез. Описательная статистика есть совокупность эмпирических методов, используемых для визуализации и интерпретации данных (расчет выборочных характеристик, таблицы, диаграммы, графики и т. д.), как правило, не требующих предположений о вероятностной природе данных. Некоторые методы описательной статистики предполагают использование возможностей современных компьютеров. К ним относятся, в частности, кластерный анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости.

Методы оценивания и проверки гипотез опираются на вероятностные модели происхождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что характеристики изучаемых объектов описываются посредством распределений, зависящих от (одного или нескольких) числовых параметров. Непараметрические модели не связаны со спецификацией параметрического семейства для распределения изучаемых характеристик. В математической статистике оценивают параметры и функции от них, представляющие важные характеристики распределений (например, математическое ожидание, медиана, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используют точечные и интервальные оценки.

Большой раздел современной математической статистики — статистический последовательный анализ, фундаментальный вклад в создание и развитие которого внес А. Вальд во время Второй мировой войны. В отличие от традиционных (непоследовательных) методов статистического анализа, основанных на случайной выборке фиксированного объема, в последовательном анализе допускается формирование массива наблюдений по одному (или, более общим образом, группами), при этом решение об проведении следующего наблюдения (группы наблюдений) принимается на основе уже накопленного массива наблюдений. Ввиду этого, теория последовательного статистического анализа тесно связана с теорией оптимальной остановки.

В математической статистике есть общая теория проверки гипотез и большое число методов, посвящённых проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др.

Большое значение имеет раздел математической статистики, связанный с проведением выборочных обследований, со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез.

Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов.

Разработка методов аппроксимации данных и сокращения размерности описания была начата более 100 лет назад, когда К. Пирсон создал метод главных компонент. Позднее были разработаны факторный анализ[2] и многочисленные нелинейные обобщения[3].

Различные методы построения (кластер-анализ), анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без), автоматической классификации и др.

В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчётов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов).

 

Вопрос 2.

Выборочный метод

 

Выборочный метод, статистический метод исследования общих свойств совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку. Математическая теория В. м. опирается на два важных раздела математической статистики — теорию выбора из конечной совокупности и теорию выбора из бесконечной совокупности. Основное отличие В. м. для конечной и бесконечной совокупностей заключается в том, что в первом случае В. м. применяется, как правило, к объектам неслучайной, детерминированной природы (например, число дефектных изделий в данной партии готовой продукции не является случайной величиной: это число — неизвестная постоянная, которую и надлежит оценить по выборочным данным). Во втором случае В. м. обычно применяется для изучения свойств случайных объектов (например, для исследования свойств непрерывно распределённых случайных ошибок измерений, каждое из которых теоретически может быть истолковано как реализация одного из бесконечного множества возможных результатов).

Выбор из конечной совокупности и его теория являются основой статистических методов контроля качества и часто применяются в социологических исследованиях (см. Выборочное наблюдение). Согласно теории вероятностей, выборка будет правильно отражать свойства всей совокупности, если выбор производится случайно, т. е. так, что любая из возможных выборок заданного объёма n из совокупности объёма N [число таких выборок равно N!/n!(N — n)!] имеет одинаковую вероятность быть фактически выбранной.

На практике наиболее часто используется выбор без возвращения (бесповторная выборка), когда каждый отобранный объект перед выбором следующего объекта в исследуемую совокупность не возвращается (такой выбор применяется при статистическом контроле качества). Выбор с возвращением (выборка с повторением) рассматривается обычно лишь в теоретических исследованиях (примером выбора с возвращением является регистрация числа частиц, коснувшихся в течение данного времени стенок сосуда, внутри которого совершается броуновское движение). Если n << N, то повторный и бесповторный выборы дают практически эквивалентные результаты.

 

Вопрос 3.

Вопрос 4.

Вариационные ряды

Вариационный ряд — упорядоченная по величине последовательность выборочных значений наблюдаемой случайной величины

X1<=…<=Xn равные между собой элементы выборки нумеруются в произвольном порядке; элементы вариационного ряда называются порядковыми (ранговыми) статистиками; число лm = m / n называется рангом порядковой статистики Xmn. Вариационный ряд используется для построения эмпирической функции распределения.

 

Вопрос 5.

Вопрос 6.

Полигон и гистограмма

 

Для наглядности строят различные графики статистического распределения, в частности, полигон и гистограмму.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки . Для построения полигона частот на оси абсцисс откладывают варианты xi, а на оси ординат – соответствующие им частоты niи соединяют точки (wi;ni)отрезками прямых.

Полигон относительных частот строится аналогично, за исключением того, что на оси ординат откладываются относительные частоты wi.

В случае непрерывного признака строится гистограмма, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала ni– сумму частот вариант, попавших в i–й интервал.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которой служат частичные интервалы длиною h, а высоты равны отношению ni/h. Для построения гистограммы частот на оси абсцисс откладывают частичные интервалы, а над ними проводят отрезки, параллельные оси абсцисс на расстоянии (высоте) ni/h. Площадь i–го прямоугольника равна – сумме частот вариант i–о интервала, поэтому площадь гистограммы частот равна сумме всех частот, т.е. объему выборки.

В случае гистограммы относительных частот по оси ординат откладываются относительные частоты wi, на оси абсцисс – частичные интервалы, над ними проводят отрезки, параллельные оси абсцисс на высоте Wi/h. Площадь i–го прямоугольника равна относительной частоте вариант Wi, попавших в i–й интервал. Поэтому площадь гистограммы относительных частот равна сумме всех относительных частот, то есть единице.

 

Вопрос 7.

Вопрос 8.

Вопрос 9.

Вопрос 10.

Вопрос 11.

Вопрос 12.

Вопрос 13.

Вопрос 14.

Вопрос 15.

Вопрос 16.

Вопрос 17.

Вопрос 19.

Линейная корреляция

 

КОРРЕЛЯЦИЯ ЛИНЕЙНАЯ - статистическая линейная связь (см.) непричинного характера между двумя количественными переменными (см.) х и у. Измеряется с помощью "коэффициента К.Л." Пирсона, который является результатом деления ковариации на стандартные отклонения обеих переменных:

,

где sxy - ковариация (см.) между переменными х и у;

sx, sy - стандартные отклонения (см.) для переменных х и у;

xi, yi - значения переменных х и у для объекта с номером i;

x, y - средние арифметические (см.) для переменных х и у.

Коэффициент Пирсона r может принимать значения из интервала [-1; +1]. Значение r = 0 означает отсутствие линейной связи между переменными х и у (но не исключает статистической связи нелинейной - см.). Положительные значения коэффициента (r > 0) свидетельствуют о прямой линейной связи; чем ближе его значение к +1, тем сильнее связь статистическая прямая (см.). Отрицательные значения коэффициента (r < 0) свидетельствуют об обратной линейной связи; чем ближе его значение к -1, тем сильнее обратная связь. Значения r = ±1 означают наличие полной линейной связи, прямой или обратной. В случае полной связи все точки с координатами (xi, yi) лежат на прямой y = a + bx.

"Коэффициент К.Л." Пирсона применяется также для измерения тесноты связи в модели регрессии линейной парной

Вопрос 20.

Статистическая гипотеза

 

 

Статистическая гипотеза, предположительное суждение о вероятностных закономерностях, которым подчиняется изучаемое явление. Как правило, С. г. определяет значения параметров закона распределения вероятностей или его вид. С. г. называется простой, если она определяет единственный закон распределения; в ином случае С. г. называется сложной и может быть представлена как некоторый класс простых С. г. Например, гипотеза о том, что распределение вероятностей является нормальным распределением с математическим ожиданием а = а0 и некоторой (неизвестной) дисперсией s2 будет сложной, составленной из простых гипотез а = а0, (а0 и — заданные числа).

 

Вопрос 21.

Виды ошибок

 

Ошибки первого рода (англ. type I errors, б errors, false positives) и ошибки второго рода (англ. type II errors, в errors, false negatives) в математической статистике — это ключевые понятия задач проверки статистических гипотез. Тем не менее, данные понятия часто используются и в других областях, когда речь идёт о принятии «бинарного» решения (да/нет) на основе некоего критерия (теста, проверки, измерения), который с некоторой вероятностью может давать ложный результат.

Определения

Пусть дана выборка из неизвестного совместного распределения PX, и поставлена бинарная задача проверки статистических гипотез:

H0, H1 где H0 — нулевая гипотеза, а H1 — альтернативная гипотеза. Предположим, что задан статистический критерий , сопоставляющий каждой реализации выборки X=xодну из имеющихся гипотез. Тогда возможны следующие четыре ситуации:

Распределение PX выборки X соответствует гипотезе H0, и она точно определена статистическим критерием, то есть f(x)=Ho.

Распределение PXвыборки соответствует гипотезе H0, но она неверно отвергнута статистическим критерием, то есть f(x)=H1.

Распределение PXвыборки Xсоответствует гипотезе H1, и она точно определена статистическим критерием, то есть f(x)=H1.

Распределение Pxвыборки Xсоответствует гипотезе H1, но она неверно отвергнута статистическим критерием, то есть f(x)=H0.

Во втором и четвертом случае говорят, что произошла статистическая ошибка, и её называют ошибкой первого и второго рода соответственно.

Вероятности ошибок (уровень значимости и мощность)

Вероятность ошибки первого рода при проверке статистических гипотез называют уровнем значимости и обычно обозначают греческой буквой б (отсюда название б-errors).

Вероятность ошибки второго рода не имеет какого-то особого общепринятого названия, на письме обозначается греческой буквой в (отсюда в-errors). Однако с этой величиной тесно связана другая, имеющая большое статистическое значение — мощность критерия. Она вычисляется по формуле (1 − в). Таким образом, чем выше мощность, тем меньше вероятность совершить ошибку второго рода.

Обе эти характеристики обычно вычисляются с помощью так называемой функции мощности критерия. В частности, вероятность ошибки первого рода есть функция мощности, вычисленная при нулевой гипотезе. Для критериев, основанных на выборке фиксированного объема, вероятность ошибки второго рода есть единица минус функция мощности, вычисленная в предположении, что распределение наблюдений соответствует альтернативной гипотезе. Для последовательных критериев это также верно, если критерий останавливается с вероятностью единица (при данном распределении из альтернативы).

В статистических тестах обычно приходится идти на компромисс между приемлемым уровнем ошибок первого и второго рода. Зачастую для принятия решения используется пороговое значение, которое может варьироваться с целью сделать тест более строгим или, наоборот, более мягким. Этим пороговым значением является уровень значимости, которым задаются при проверке статистических гипотез. Например, в случае металлодетектора повышение чувствительности прибора приведёт к увеличению риска ошибки первого рода (ложная тревога), а понижение чувствительности — к увеличению риска ошибки второго рода (пропуск запрещённого предмета).

 

Вопрос 22.

Вопрос 23.

Вопрос 24.

Вопрос 1.

Задачи математической статистики

 

Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.

Во многих своих разделах математическая статистика опирается на теорию вероятностей, позволяющую оценить надёжность и точность выводов, делаемых на основании ограниченного статистического материала (напр., оценить необходимый объём выборки для получения результатов требуемой точности при выборочном обследовании).

Предмет и методы математической статистики

Математическая статистика — раздел математики, разрабатывающий методы регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений[1]. В зависимости от математической природы конкретных результатов наблюдений статистика математическая делится на статистику чисел, многомерный статистический анализ, анализ функций (процессов) и временных рядов, статистику объектов нечисловой природы.

Выделяют описательную статистику, теорию оценивания и теорию проверки гипотез. Описательная статистика есть совокупность эмпирических методов, используемых для визуализации и интерпретации данных (расчет выборочных характеристик, таблицы, диаграммы, графики и т. д.), как правило, не требующих предположений о вероятностной природе данных. Некоторые методы описательной статистики предполагают использование возможностей современных компьютеров. К ним относятся, в частности, кластерный анализ, нацеленный на выделение групп объектов, похожих друг на друга, и многомерное шкалирование, позволяющее наглядно представить объекты на плоскости.

Методы оценивания и проверки гипотез опираются на вероятностные модели происхождения данных. Эти модели делятся на параметрические и непараметрические. В параметрических моделях предполагается, что характеристики изучаемых объектов описываются посредством распределений, зависящих от (одного или нескольких) числовых параметров. Непараметрические модели не связаны со спецификацией параметрического семейства для распределения изучаемых характеристик. В математической статистике оценивают параметры и функции от них, представляющие важные характеристики распределений (например, математическое ожидание, медиана, стандартное отклонение, квантили и др.), плотности и функции распределения и пр. Используют точечные и интервальные оценки.

Большой раздел современной математической статистики — статистический последовательный анализ, фундаментальный вклад в создание и развитие которого внес А. Вальд во время Второй мировой войны. В отличие от традиционных (непоследовательных) методов статистического анализа, основанных на случайной выборке фиксированного объема, в последовательном анализе допускается формирование массива наблюдений по одному (или, более общим образом, группами), при этом решение об проведении следующего наблюдения (группы наблюдений) принимается на основе уже накопленного массива наблюдений. Ввиду этого, теория последовательного статистического анализа тесно связана с теорией оптимальной остановки.

В математической статистике есть общая теория проверки гипотез и большое число методов, посвящённых проверке конкретных гипотез. Рассматривают гипотезы о значениях параметров и характеристик, о проверке однородности (то есть о совпадении характеристик или функций распределения в двух выборках), о согласии эмпирической функции распределения с заданной функцией распределения или с параметрическим семейством таких функций, о симметрии распределения и др.

Большое значение имеет раздел математической статистики, связанный с проведением выборочных обследований, со свойствами различных схем организации выборок и построением адекватных методов оценивания и проверки гипотез.

Задачи восстановления зависимостей активно изучаются более 200 лет, с момента разработки К. Гауссом в 1794 г. метода наименьших квадратов.

Разработка методов аппроксимации данных и сокращения размерности описания была начата более 100 лет назад, когда К. Пирсон создал метод главных компонент. Позднее были разработаны факторный анализ[2] и многочисленные нелинейные обобщения[3].

Различные методы построения (кластер-анализ), анализа и использования (дискриминантный анализ) классификаций (типологий) именуют также методами распознавания образов (с учителем и без), автоматической классификации и др.

В настоящее время компьютеры играют большую роль в математической статистике. Они используются как для расчётов, так и для имитационного моделирования (в частности, в методах размножения выборок и при изучении пригодности асимптотических результатов).

 

Вопрос 2.

Выборочный метод

 

Выборочный метод, статистический метод исследования общих свойств совокупности каких-либо объектов на основе изучения свойств лишь части этих объектов, взятых на выборку. Математическая теория В. м. опирается на два важных раздела математической статистики — теорию выбора из конечной совокупности и теорию выбора из бесконечной совокупности. Основное отличие В. м. для конечной и бесконечной совокупностей заключается в том, что в первом случае В. м. применяется, как правило, к объектам неслучайной, детерминированной природы (например, число дефектных изделий в данной партии готовой продукции не является случайной величиной: это число — неизвестная постоянная, которую и надлежит оценить по выборочным данным). Во втором случае В. м. обычно применяется для изучения свойств случайных объектов (например, для исследования свойств непрерывно распределённых случайных ошибок измерений, каждое из которых теоретически может быть истолковано как реализация одного из бесконечного множества возможных результатов).

Выбор из конечной совокупности и его теория являются основой статистических методов контроля качества и часто применяются в социологических исследованиях (см. Выборочное наблюдение). Согласно теории вероятностей, выборка будет правильно отражать свойства всей совокупности, если выбор производится случайно, т. е. так, что любая из возможных выборок заданного объёма n из совокупности объёма N [число таких выборок равно N!/n!(N — n)!] имеет одинаковую вероятность быть фактически выбранной.

На практике наиболее часто используется выбор без возвращения (бесповторная выборка), когда каждый отобранный объект перед выбором следующего объекта в исследуемую совокупность не возвращается (такой выбор применяется при статистическом контроле качества). Выбор с возвращением (выборка с повторением) рассматривается обычно лишь в теоретических исследованиях (примером выбора с возвращением является регистрация числа частиц, коснувшихся в течение данного времени стенок сосуда, внутри которого совершается броуновское движение). Если n << N, то повторный и бесповторный выборы дают практически эквивалентные результаты.

 

Вопрос 3.







Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.232.125.29 (0.014 с.)