Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.

Поиск

Количество лейкоцитов. В крови здоровых людей в условиях основного обмена количество лейкоцитов колеблется в пределах 6-8*109 /л. Подсчет их ведется под микроскопом в камере Горяева или с помощью специальных электронных счетчиков (гемоцитометров).

Лейкоцитарная формула. При оценке количественных изменений лейкоцитов решающее значение принадлежит не столько изменениям их общего числа, сколько изменениям процентных соотношений разных форм лейкоцитов. Процентные соотношения лейкоцитов называются лейкоцитарной формулой. Изучение лейкоцитарной формулы здорового человека не представляет затруднений благодаря четкой морфологической характеристике различных видов лейкоцитов. Существует несколько методик подсчета мазков крови, окрашенных по методу Паппенгейма или Романовского.

Лейкоцитарная формула здорового человека, %

Гранулоциты Агранулоциты
нейтрофилы базофилы     эозинофилы     лимфоциты     моноциты    
юные палочко-ядерные сегменто-ядерные
0—1 1—4 45—65 0—1 1—4 25—40 2—8

Увеличение количества юных и палочкоядерных нейтрофилов свидетельствует об омоложении крови и носит название сдвига лейкоцитарной формулы влево, снижение количества этих клеток свидетельствует о старении крови и называется сдвигом лейкоцитарной формулы вправо. Сдвиг влево часто наблюдается при лейкозах (белокровие), инфекционных и воспалительных заболеваниях.

Лейкоцитарная формула, как и количество лейкоцитов, претерпевает существенные изменения в течение первых лет жизни человека. Если в первые часы у новорожденного отмечается преобладание гранулоцитов, то уже к концу первой недели после рождения количество гранулоцитов значительно снижается и основную их массу составляют лимфоциты и моноциты. Начиная со второго года жизни вновь наступает постепенное увеличение относительного и абсолютного числа гранулоцитов и уменьшение мононуклеаров, главным образом лимфоцитов. Точки пересечения кривых агранулоцитов и гранулоцитов - 5 месяцев и 5 лет. У лиц в возрасте 14-15 лет лейкоцитарная формула практически не отличается от таковой взрослых людей.

Большое значение при оценке лейкограмм следует придавать не только процентному соотношению лейкоцитов, но и их абсолютным величинам ("лейкоцитарный профиль" по Мошковскому). Вполне понятно, что уменьшение абсолютного количества определенных видов лейкоцитов приводит к кажущемуся увеличению относительного количества других форм лейкоцитов. Поэтому только определение абсолютных величин может свидетельствовать о действительно имеющих место изменениях.

Лейкоциты

Общая характеристика. Лейкоциты, или белые (точнее бесцветные) кровяные тельца, – клетки с ядрами, не содержащие гемоглобина. Лейкоциты неоднородны по форме, функциям, местам образования. Их концентрация в крови значительно изменяется в зависимости от времени суток и функционального состояния организма. В норме в 1 мкл крови здорового человека содержится от 4000 до 10000 лейкоцитов. При повышении численности лейкоцитов выше нормы имеет место лейкоцитоз, при понижении – лейкопения.

Более 50% лейкоцитов находится за пределами сосудистого русла в межклеточном пространстве и лимфе, около 30% – в костном мозге. Для лейкоцитов, кроме одной группы базофилов кровь играет роль переносчика: она доставляет их от мест образования к тем тканям, где они необходимы. Все виды лейкоцитов способны к амебовидному движению, поэтому они могут выходить через стенку кровеносных сосудов.

Лейкоциты способны окружать инородные тела (бактериальные токсины, продукты распада бактерий или клеток организма, комплексы антиген-антитело) и захватывать их в цитоплазму. Это явление называется фагоцитозом. Попавшие в цитоплазму инородные тела подвергаются деструкции, аналогичной процессу пищеварения. Это возможно благодаря тому, что во всех лейкоцитах содержатся фермента протеазы, пептидазы, диастазы, рибонуклеазы и липазы.

Выделяют три типа лейкоцитов: гранулоциты, лимфоциты и моноциты (Рис. 1).

 

Рис. 1. Виды лейкоцитов

 

Гранулоциты. Название связано с наличием в цитоплазме гранул, выявляемых при гистологических операциях фиксации и окрашивании. Все гранулоциты образуются в костном мозге, поэтому они относятся к клеткам миелоидного ряда. По особенностям окрашивания они подразделяются на нейтрофильные, эозинофильные и базофильные.

Нейтрофилы составляют подавляющее большинство гранулоцитов, их количество доходит до 93–96%, а концентрация в крови до 4150 клеток в 1 мкл. Время циркуляции в кровяном русле 6–8 час, так как они быстро мигрируют в слизистые оболочки.

На окрашенных по Романовскому мазках крови нейтрофилы имеют круглую форму с диаметром около 12 мк. Размеры цитоплазмы значительно преобладают над размерами ядра. Цитоплазма имеет розоватый оттенок и содержит большое количество мелких зерен синевато-розоватого цвета. Ядро зрелых нейтрофилов разделено на 3-4 сегмента, соединенных тонкими нитями хроматина.

Основной функцией нейтрофилов является защита организма от инфекционно-токсических воздействий. Участие нейтрофилов в процессах защиты проявляется как их способностью к фагоцитозу и перевариванию микробов, так и их ролью в выработке целого ряда ферментов, оказывающих бактерицидное действие. Они фагоцитируют бактерии и продукты распада тканей, разрушая их лизосомными ферментами. Гной состоит главным образом из нейтрофилов или их остатков. Нейтрофилы являются самыми важными функциональными элементами неспецифической защитной системы крови. Нейтрофилы не вырабатывают антител, но, адсорбируя их на своей оболочке, могут доставлять антитела к очагам инфекции. Фагоцитарная функция нейтрофилов неразрывно связана с их способностью к амебоидному движению. Как фагоцитоз, так и движение гранулоцитов сопряжены с затратой энергии, для чего в лейкоцитах присутствует весь набор окислительно-восстановительных ферментов для синтеза АТФ. Большое количество гликогена обеспечивает способность гранулоцитов к анаэробному гликолизу, что позволяет им сохранять свою функциональную активность в крайне неблагоприятных условиях воспалительного очага.

Функция гранулоцитов не ограничивается фагоцитозом и переносом антител. В процессе своей жизнедеятельности нейтрофилы выделяют целый ряд веществ, обладающих широким спектром действия. Некоторые из них имеют четкую бактерицидную активность, другие - усиливают митотическую активность клеток, улучшают регенерацию тканей, усиливают двигательную активность. Продукты распада лейкоцитов оказывают стимулирующее действие на гранулоцитопоэз.

Свою защитную функцию лейкоциты осуществляют в тканях, где срок их жизни может быть достаточно длительным - до нескольких месяцев. Длительность же циркуляции нейтрофилов невелика, и составляет от 8 часов до 2 суток (по радиоактивному тимидину).

Лейкопоэз осуществляется экстраваскулярно и лейкоциты, в том числе и нейтрофилы, попадают в сосудистое русло благодаря амебовидному движению и выделению протеолитических ферментов, способных растворять белки костного мозга и капилляров. В циркулирующей крови нейтрофилы живут от 8 ч до 7 сут. Находящиеся в кровотоке нейтрофилы могут быть условно разделены на 2 группы: 1) свободно циркулирующие и 2) занимающие краевое положение в сосудах. Между обеими группами существует динамическое равновесие и постоянный обмен. Следовательно, в сосудистом русле нейтрофилов содержится приблизительно в 2 раза больше, чем определяется в вытекающей крови.

Предполагают, что разрушение нейтрофилов происходит за пределами сосудистого русла. По-видимому, все лейкоциты уходят в ткани, где и погибают. Обладая фагоцитарной функцией, нейтрофилы поглощают бактерии и продукты разрушения тканей. В составе нейтрофилов содержатся ферменты, разрушающие бактерии. Нейтрофилы способны адсорбировать антитела и переносить их к очагу воспаления, принимают участие в обеспечении иммунитета.

Под влиянием продуктов, выделяемых нейтрофилами, усиливается митотическая активность клеток, ускоряются процессы репарации, стимулируется гемопоэз и растворение фибринового сгустка.

Эозинофилы также способны к фагоцитозу. На своей поверхности они адсорбируют многие тканевые вещества, разрушая и обезвреживая их. Содержание эозинофилов возрастает при аллергических реакциях, глистных инвазиях и аутоиммунных заболеваниях.

Диаметр эозинофилов колеблется от 12 до 15 мк. Особенностью их является наличие в их цитоплазме большого количества богатых ферментами гранул диаметром около 0,2 мк. При окраске по Романовскому они принимают желто-красный цвет и почти полностью заполняют цитоплазму. Ядро, как правило, состоит из двух сегментов.

Эозинофилы обладают способностью к фагоцитозу и амебоидному движению. Но фагоцитарная активность их значительно меньше выражена, чем у нейтрофилов, поэтому можно считать, что фагоцитоз не является основной функцией эозинофилов. Исследования последних лет свидетельствуют о несомненном отношении эозинофилов к метаболизму гистамина. Они активно адсорбируют гистамин в местах его максимального скопления. Благодаря наличию гистаминазы эозинофилы могут инактивировать гистамин. Кроме того, эозинофилы переносят адсорбированный гистамин к органам выделения - легким и кишечнику. Хорошо известно, что эозинофилы сами не вырабатывают гистамина, этим занимаются базофилы и тучные клетки.

Эозинофилы не вырабатывают антител. Но они адсорбируют антигены и переносят их в органы, богатые плазматическими и ретикулярными клетками (селезенка, костный мозг, лимфатические узлы), тем самым способствуя усиленной выработке антител. Эозинофилы могут адсорбировать многие токсические продукты белковой природы и разрушать их.

Количество этих клеток в крови колеблется в течение суток. Минимальное их количество определяется ночью, максимальное - в утренние часы. Эти дневные колебания связаны с активностью коры надпочечников Повышение тонуса симпатической нервной системы обычно приводит к эозинофилопении, ваготония приводит к эозинофилии. Суточные колебания не выходят за пределы физиологической нормы.

Эозинофилия встречается в клинике при многих патологических процессах, чаще всего связанных с аллергией. Уменьшение количества эозинофилов отмечается при анафилактическом шоке, в острую фазу многих инфекционных заболеваний, при введении глюкокортикоидов, при стрессе.

Длительность пребывания эозинофилов в кровотоке не превышает нескольких часов, после чего они проникают в ткани, где и разрушаются. Эозинофилы обладают фагоцитарной активностью. Особенно интенсивно они фагоцитируют кокки. В тканях эозинофилы скапливаются преимущественно в тех органах, где содержится гистамин — в слизистой оболочке и полслизистой основе желудка и тонкой кишки, в легких. Эозинофилы захватывают гистамин и разрушают его с помощью фермента гистаминазы. В составе эозинофилов находится фактор, тормозящий выделение гистамина тучными клетками и базофилами. Эозинофилы играют важную роль в разрушении токсинов белкового происхождения, чужеродных белков и иммунных комплексов.

Чрезвычайно велика роль эозинофилов, осуществляющих цитотоксический эффект, в борьбе с гельминтами, их яйцами и личинками. В частности, при контакте активированного эозинофила с личинками происходит его дегрануляция с последующим выделением большого количества белка и ферментов, например пероксидаз, на поверхность личинки, что приводит к разрушению последней. Увеличение числа эозинофилов, наблюдаемое при миграции личинок, является одним из важнейших механизмов в ликвидации гельминтозов.

Содержание эозинофилов резко возрастает при аллергических заболеваниях, когда происходит дегрануляция базофилов и выделение анафилактического хемотаксического фактора, который привлекает эозинофилы. При этом эозинофилы выполняют роль «чистильщиков», фагоцитируя и инактивируя продукты, выделяемые базофилами.

В эозинофилах содержатся катионные белки, которые активируют компоненты калликреин-кининовой системы и влияют на свертывание крови. Предполагают, что катионные белки, повреждая эндотелий, играют важную роль при развитии некоторых видов патологии сердца и сосудов.

При тяжело протекающих инфекционных заболеваниях число эозинофилов резко снижается, а иногда при подсчете лейкоцитарной формулы они вообще не выявляются (развивается анэозинопения).

Базофилы содержат в своих гранулах гепарин и гистамин. Диаметр базофилов не превышает 10 мк. В окрашенных по Романовскому мазках крови базофилы выделяются по наличию в их цитоплазме крупных гранул темно-фиолетового цвета, содержащих много гепарина, гистамина и гиалуроновой кислоты. Ядро имеет лапчатую форму, обычно занимая центральное положение в клетке. Цитоплазма окрашена в розовый цвет.

Функция базофилов сводится к синтезу гепарина и гистамина. Они способны выделять гепарин в плазму после приема жирной пищи, что способствует активации липолиза. Гепарин участвует в поддержании жидкого состояния крови. Поверхность базофилов способна связывать антигены, что ведет к выделению из них гистамина, вызывающего такие аллергические реакции, как расширение сосудов, покраснение кожи, зудящую сыпь. Базофилы содержат около половины всего гистамина крови. Способность базофилов к синтезу гепарина и гистамина свидетельствует о непосредственном отношении этих элементов к процессам свертывания крови и течению аллергических реакций, при которых всегда обнаруживается дегрануляция базофилов.

В крови базофилов очень мало (40—60 в 1 мкл) однако в различных тканях, в том числе сосудистой стенке, содержатся тучные клетки, иначе называемые «тканевые базофилы». Функция базофилов обусловлена наличием в них ряда биологически активных веществ. К ним в первую очередь принадлежит гистамин, расширяющий кровеносные сосуды. В базофилах содержатся противосвертывающее вещество гепарин, а также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки. Кроме того, базофилы содержат фактор активации тромбоцитов — ФАТ (соединение, обладающее чрезвычайно широким спектром действия), тромбоксаны (соединения, способствующие агрегации тромбоцитов), лейкотриены и простагландины — производные арахидоновой кислоты и др. Особо важную роль играют эти клетки при аллергических реакциях (бронхиальная астма, крапивница, глистные инвазии, лекарственная болезнь и др.), когда под влиянием комплекса антиген — антитело происходит дегрануляция базофилов и биологически активные соединения поступают в кровь, обусловливая клиническую картину перечисленных заболеваний.

Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении.

Лимфоциты. Они составляют 25–40% всех лейкоцитов, у детей их содержание доходит до 50%. Они образуются во многих органах: лимфатических узлах, миндалинах, пейеровых бляшках, червеобразном отростке, селезенке, тимусе, и костном мозге. Лимфоциты играют главную роль в специфических иммунных ответах при различных инфекционных заболеваниях, так как вырабатывают специфические белки иммуноглобулины. Активно участвуют в разрушении токсических веществ, образующихся в самом организме.

Морфологической особенностью лимфоцитов, отличающей их от других клеточных элементов крови, является преобладание размеров ядра над размерами цитоплазмы. Ядро имеет круглую или слегка овальную форму. При обычных методах окраски оно компактно. Протоплазма окружает ядро узким ободком и окрашивается основными красками. По размерам выделяют малые лимфоциты (6-9 мк.), средние (10-14 мк), и большие (более 14 мк). Большинство циркулирующих лимфоцитов относятся к группе малых. Размер определяется зрелостью клетки - у молодых он больше.

Функция лимфоцитов тесно связана с процессами иммуногенеза. Они участвуют в синтезе бета и гамма глобулинов как не иммунной, так и иммунной природы. Способность к выработке антител максимально выражена у больших и средних лимфоцитов. Лимфоциты не только вырабатывают антитела. Они обладают способностью к адсорбции циркулирующих в крови антител. Мигрируя в ткани, лимфоциты доставляют антитела к очагам воспаления. Лимфоциты обладают также и антитоксической функцией. Они могут адсорбировать и инактивировать токсины самого разнообразного происхождения (бактериальные, пищевые, образующиеся при распаде тканей и др.).

По своей функциональной активности и способам выполнения защитной реакции все лимфоциты подразделяются на два класса: T-лимфоциты (тимус-зависимые) и В- лимфоциты (бурсо-зависимые). Первые отвечают за т.н. клеточный иммунитет, и распознают чужеродные клетки, что называется, при личной встрече. Вторые обеспечивают т.н. гуморальный иммунитет - они сидят в лимфоидных органах, реагируют на принесенные к ним другими клетками антигены, а выработанные ими антитела поступают в кровь и распространяются по всему телу. Кроме того, среди Т- лимфоцитов выделяются клетки - супрессоры, киллеры, хелперы и т.д., каждые из которых обладают своей особенной функцией в рамках иммунной реакции.

Количество лимфоцитов в крови закономерно изменяется при многих патологических процессах. Уменьшение - лимфопения - постоянный и ранний симптом лучевой болезни. Она также нередко развивается при применении глюкокортикоидов и при реакциях напряжения. Абсолютный лимфоцитоз характерен для хронической туберкулезной интоксикации и лимфатической лейкемии.

Как и другие виды лейкоцитов, образуются в костном мозге, а затем поступают в сосудистое русло. Здесь одна популяция лимфоцитов направляется в вилочковую железу, где превращается в так называемые Т-лимфоциты (от слова thymus.

Популяция Т-лимфоцитов гетерогенна и представлена следующими классами клеток. Т-киллеры, или убийцы (от англ. tu kill — убивать), осуществляющие лизис клеток-мишеней, к которым можно отнести возбудителей инфекционных болезней, грибки, микобактерии, опухолевые клетки и др. Т-хелперы, или помощники иммунитета. Различают ТТ-хелперы, усиливающие клеточный иммунитет, и ТВ-хелперы, облегчающие течение гуморального иммунитета. Т-амплифайеры усиливают функцию Т- и В-лимфоцитов, однако в большей степени влияют на Т-лимфоциты. Т-супрессоры — лимфоциты, препятствующие иммунному ответу. Различают Т—Т-супрессоры, подавляющие клеточный иммунитет, и ТВ-супрессоры, угнетающие гуморальный иммунитет. Т-дифференцирующие, или Td-лимфоциты, регулируют функцию стволовых кроветворных клеток, т. е. влияют на соотношение эритроцитарного, лейкоцитарного и тромбоцитарного (мегакариоцитарного) ростков костного мозга. Т-контрсупрессоры препятствуют действию Т-супрессоров и, следовательно, усиливают иммунный ответ. Т-клетки памяти хранят информацию о ранее действующих антигенах и таким образом регулируют так называемый вторичный иммунный ответ, который проявляется в более короткие сроки, так как минует основные стадии этого процесса.

Другая популяция лимфоцитов образует В-лимфоциты (от слова bursa), окончательное формирование которых у человека и млекопитающих, по-видимому, происходит в костном мозге или системе лимфоидно-эпителиальных образований, расположенных по ходу тонкой кишки (лимфоидные, или пейеровы бляшки и др.).

Большинство В-лимфоцитов в ответ на действие антигенов и цитокинов переходит в плазматические клетки, вырабатывающие антитела и потому именуемые антителопродуцентами. Среди В-лимфоцитов также различают В-киллеры, В-хелперы и В-супрессоры.

В-киллеры выполняют те же функции, что и Т-киллеры. Что касается В-хелперов, то они способны представлять антиген, усиливать действие Td-лимфоцитов и Т-супрессоров, а также участвовать в других реакциях клеточного и гуморального иммунитета. Функция В-cynpeccopoв заключается в торможении пролиферации антителопродуцентов, к которым принадлежит основная масса В-лимфоцитов.

Существует группа клеток, получивших наименование «ни Т-, ни В-лимфоциты». К ним относятся так называемые 0-лимфоциты, являющиеся предшественниками Т- и В-клеток и составляющие их резерв. Большинство исследователей относят к 0-лим-фоцитам особые клетки, именуемые натуральными (природными) киллерами, или НК-лимфоцитами. Как и другие цитотоксические лимфоциты (ЦТЛ), НК-лимфоциты секретируют белки, способные «пробуравливать» отверстия (поры) в мембране чужеродных клеток и потому названные перфоринами. ЦТЛ содержат протеолитические ферменты (цитолизины), которые проникают в чужеродную клетку через образующиеся поры и разрушают ее. Существуют клетки, несущие на своей поверхности маркеры Т- и В-лимфоцитов (двойные клетки). Они способны заменять как те, так и другие.

ПРОЛИФЕРАЦИЯ

 

СПЕЦИФИЧЕСКИЕ ГЛОБУЛИНЫ

 

Моноциты. Морфологически моноциты являются хорошо дифференцированными клетками. Они относятся к агранулоцитам, поскольку не содержат цитоплазматических гранул.Это самые большие элементы периферической крови. Диаметр их колеблется от 13 до 25 мк. При окраске по Романовскому отмечается значительный полиморфизм клеток, проявляющийся не только в разнообразии формы и диаметра, но и в особенностях строения ядра и окраски цитоплазмы. Ядро моноцита имеет неправильную овальную форму, чаще бобовидную с неравномерным распределением хроматина. Протоплазма окрашивается в голубовато-серый цвет и содержит разное количество очень мелких азурофильных гранул.

На их долю приходится 4–7% всех лейкоцитов, они образуются в костном мозге. Выполняют неспецифическую защитную функцию, так как обладают наибольшей способностью к фагоцитозу среди всех лейкоцитов. Из крови выходят в ткани, там достигают зрелости, превращаясь в гистиоциты, или тканевые макрофаги. Вблизи очага воспаления могут размножаться делением. Гистиоциты образуют отграничивающий вал вокруг инородных тел, которые не разрушаются или слабо разрушаются ферментами.

Моноциты обладают способностью к самостоятельному амебоидному движению. Их способность к перемещению значительно более выражена, чем у лимфоцитов. Моноциты - активные фагоциты. Благодаря своей подвижности они легко проникают в очаги воспаления, где вместе с гистиоцитами фагоцитируют не столько бактерии, сколько продукты распада клеток и тканей. Моноциты также способны инактивировать токсины воспалительного очага.

Циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство тканевых макрофагов. Функции их весьма многообразны. Моноциты являются чрезвычайно активными фагоцитами, распознают антиген и переводят его в так называемую иммуногенную форму, образуют биологически активные соединения — монокины (действующие в основном на лимфоциты), играют существенную роль в противоинфекционном и противораковом иммунитете, синтезируют отдельные компоненты системы комплемента, а также факторы, принимающие участие в сосудисто-тромбоцитарном гемостазе, процессе свертывания крови и растворении кровяного сгустка.

Факторы, влияющие на количество лейкоцитов. Хотя в среднем в крови здорового человека содержится 6-8*109 /л., многочисленные исследования указывают на довольно большой физиологический диапазон их колебаний (4-10*109). Существуют и возрастные изменения числа лейкоцитов. У новорожденных детей в течение первых суток число лейкоцитов превышает 20*109 в л. В последующем оно быстро снижается и достигает нормальных величин к 5-6 годам.

Постоянство лейкоцитарного состава крови обусловлено сложной координацией лейкопоэза и скорости разрушения лейкоцитов. Поэтому как нарушения скорости продукции, так и изменения темпов их разрушения приводят к изменению количества лейкоцитов. Возникающие в этих условиях количественные изменения лейкоцитов характеризуются стойкостью и длительностью. Они, как правило, сочетаются с определенными изменениями качественного состава лейкоцитов и нарушениями их функциональной активности. Так, при большинстве воспалительных заболеваний закономерно развивается нейтрофильный лейкоцитоз, связанный с активацией гранулопоэза.

Определенное значение в возникновении количественных изменений лейкоцитов принадлежит и их перераспределению в организме. Перераспределительные лейкоцитарные реакции осуществляются благодаря изменениям количества лейкоцитов, депонированных в сосудах внутренних органов, главным образом - в селезенке и легких. В реализации перераспределительных лейкоцитарных реакций принимают участие и зрелые лейкоциты, депонированные в синусах костного мозга. Все сказанное полностью объясняет быстроту развития этих реакций. Даже минимальные изменения функциональной активности организма могут привести к перераспределению лейкоцитов. Так, у человека в вертикальном положении число лейкоцитов в крови несколько выше, чем в горизонтальном. Любое физическое напряжение сопровождается перераспределительных лейкоцитозом. Степень лейкоцитоза обычно параллельна интенсивности производимой работы.

Менее закономерные изменения возникают в организме при приеме пищи. У большинства здоровых людей в течение первых 15-20 минут после приема пищи отмечается некоторое уменьшение количества лейкоцитов, сменяемое в последующем умеренным увеличением их числа. Общая длительность "пищеварительного лейкоцитоза" не превышает 3-4 часов. Количество лейкоцитов при этом обычно сохраняется в пределах физиологической нормы.

К группе перераспределительных лейкоцитарных реакций могут быть отнесены и изменения числа лейкоцитов, возникающие при кратковременном болевом раздражении, наркозе, и т.д. Отличительной чертой перераспределительных лейкоцитарных реакций является их кратковременность и отсутствие существенных изменений в лейкоцитарной формуле.

Более сложным является патогенез лейкоцитоза, возникающего нередко во второй половине беременности. При этом в лейкоцитарной формуле нередко отмечается сдвиг влево, связанный с увеличением процента палочкоядерных нейтрофилов. Считается, что это зависит от изменения гормонального баланса у беременных, что наряду с перераспределением крови приводит к описанным изменениям.

Своеобразные изменения претерпевает белая кровь в разные стадии адаптационного синдрома. В стадии мобилизации обычно отмечается лейкопения, связанная со значительным уменьшением числа лимфоцитов и эозинофилов. В стадии резистентности состав крови обычно не меняется. При длительном воздействии раздражителя (стадии истощения) количество лимфоцитов и эозинофилов вновь снижается при одновременном развитии нейтрофильного лейкоцитоза. Определенное значение в развитии этих изменений имеют глюкокортикоиды, влияющие на кроветворение.

Лейкопении встречаются только при патологических состояниях. Особенно тяжелая лейкопения может наблюдаться в случае поражения костного мозга — острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям в специфической и неспецифической защите, попутным заболеваниям, часто инфекционного характера, и даже смерти.

Регуляция лейкопоэза

Все лейкоциты образуются в красном костном мозге из единой стволовой клетки, однако родоначальницей миелопоэза является бипотенциальная колониеобразующая единица гранулоцитарно-моноцитарная (КОЕ-ГМ) или клетка-предшественница. Для ее роста и дифференцировки необходим особый колониестимулирующий фактор (КСФ), вырабатываемый у человека моноцитарно-макрофагальными клетками, костным мозгом и лимфоцитами.

КСФ является гликопротеидом и состоит из двух частей — стимулятора продукции эозинофилов (Эо-КСФ) и стимулятора продукции нейтрофилов и моноцитов (ГМ-КСФ), относящихся к ранним гемопоэтическим ростовым факторам. Содержание ГМ-КСФ стимулируется Т-хелперами и подавляется Т-супрессорами. На более поздних этапах на лейкопоэз влияют гранулоцитарный колониестимулирующий фактор — Г-КСФ (способствует развитию нейтрофилов) и макрофагальный колониестимулирующий фактор — М-КСФ (приводит к образованию моноцитов), являющиеся позднодействующими специфическими ростовыми факторами.

Установлено, что Td-лимфоциты стимулируют дифференцировку клеток в гранулоцитарном направлении. В регуляции размножения ранних поли- и унипотентных клеток имеет важное значение их взаимодействие с Т-лимфоцитами и макрофагами. Эти клетки влияют на клетки-предшественницы с помощью лимфокинов и монокинов, содержащихся в мембране и отделяющихся от нее в виде «пузырьков» при тесном контакте с клетками-мишенями.

Из костного мозга и отдельных видов лейкоцитов (гранулоцитов и агранулоцитов) выделен комплекс полипептидных факторов, выполняющих функции специфических лейкопоэтинов.

Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и др.) являются факторами роста и дифференцировки Т- и В-лимфоцитов.

Лейкоциты являются наиболее «подвижной» частью крови, быстро реагирующей на различные изменения в окружающей среде и организме развитием лейкоцитоза, что обеспечивается существованием клеточного резерва. Известны два типа гранулоцитарных резервов — сосудистый и костномозговой. Сосудистый гранулоцитарный резерв представляет собой большое количество гранулоцитов, расположенных вдоль стенок сосудистого русла, откуда они мобилизуются при повышении тонуса симпатического отдела автономной (вегетативной) нервной системы.

Количество клеток костномозгового гранулоцитарного резерва в 30—50 раз превышает их количество в кровотоке. Мобилизация этого резерва происходит при инфекционных заболеваниях, сопровождается сдвигом лейкоцитарной формулы влево и обусловлена в основном воздействием эндотоксинов.

Своеобразные изменения претерпевают лейкоциты в разные стадии адаптационного синдрома, что обусловлено действием гормонов гипофиза (АКТГ) и надпочечника (адреналина, кортизона, дезоксигидрокортизона). Уже через несколько часов после стрессорного воздействия развивается лейкоцитоз, который обусловлен выбросом нейтрофилов, моноцитов и лимфоцитов из депо крови. При этом число лейкоцитов не превышает 16—18 тыс. в 1 мкл. В стадии резистентности число и состав лейкоцитов мало отличаются от нормы. В стадии истощения развивается лейкоцитоз, сопровождающийся увеличением числа нейтрофилов и снижением числа лимфоцитов и эозинофилов.

6-6. Понятие о группах крови и системах групповых антигенов. Группы крови систем АВО: открытие, сочетания агглютининов и агглютиногенов этой системы в крови людей, их стандартные обозначения. Правила переливания крови.

Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).

В 1901 г. венский врач К. Ландштейнер в крови здоровых людей открыл вещества, которые способны вызывать агглютинацию (склеивание) эритроцитов других людей. Оказалось, что эритроциты человека (так же, как и другие клетки крови) являются носителями многочисленных антигенов, которые обладают определенной специфичностью и вызывают против себя образование одноименных антител. Кровь каждого человека имеет определенный антигенный состав и отражает его индивидуальность. Как нет двух людей с одинаковыми отпечатками пальцев, так нет и двух лиц с абсолютно одинаковым антигенным составом эритроцитов.

С открытием К. Ландштейнером групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К. Ландштейнер впервые обнаружил, что плазма, или сыворотка, одних людей способна агглютинировать (склеивать) эритроциты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых α и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 ο С. Вот почему при переливании несовместимой крови у человека уже через 30—40 с. наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглютинация, но не наблюдается гемолиз.

Таблица 1. Серологический состав основных групп крови (система АВО)

Группа крови Эритроциты Плазма, или сыворотка
агглютиногены агглютинины и гемолизины
I(О)   α,β
II (А) А β
III (В) В а
IV (АВ) АВ  

Различные антигены составляют уже более 15 систем групп крови, но практически наиболее важными из них являются система АВ0 и резус (Rh). Другие разновидности факторов крови встречаются очень редко. Групповые свойства крови передаются по наследству согласно законам наследования. Поэтому у детей не может быть агглютиногенов, отсутствующих у родителей. Такая экспертиза применяется при определении отцовства.

Групповые свойства системы АВ0 появляются у человека в ранние сроки эмбрионального развития (уже у 5-7 недельного эмбриона ткани имеют антигенную дифференцировку). Группа крови у человека является его постоянным признаком и не изменяется в течение всей жизни. Выделение четырех групп крови положило начало новой эре в истории переливания крови, устранив основную причину пострансфузионных реакций.

В системе АВ0 в эритроцитах обнаруживаются два агглютинируемых фактора - агглютиногены А и В, а в плазме - соответственно два агглютинина - а и в (альфа и бета). В крови человека никогда не встречаются одновременно одноименные факторы, поэтому в организме агглютинации не происходит.

Рис. 1. Представление об агглютинации и группах крови человека

Тяжелые последствия переливания крови наступают в том случае, когда эритроциты крови донора (дающего кровь) агглютинируются плазмой крови реципиента (получающего кровь). Это бывает, когда в эритроцитах введенной крови содержится агглютиноген, совпадающий (одноименный) с агглютинином плазмы, причем концентрация последних достаточна для склеивания агглютиногенов. Это условие схематически можно обозначить так:

А+а, а>А или В+в, в>В

В результате склеивания эритроцитов и последующего их гемолиза возникает



Поделиться:


Последнее изменение этой страницы: 2016-04-18; просмотров: 1697; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.48.9 (0.02 с.)