Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вільні згасаючі коливання мають своїми характеристикамиСодержание книги
Поиск на нашем сайте
· час релаксації, · кількість повних коливань за час релаксації. · декремент згасання, · логарифмічний декремент згасання, · добротність коливальної системи, Час релаксації tе ¾ це час, за який амплітуда коливання зменшується в е разів jo(t) = Aexp(-γt) Þ e = jo(t) / jo(t+t)= exp(γtе) Þ tе = 1/γ. (14.41) За час релаксації система здійснить ne=tе/T=1/(gT) повних коливань. Таким чином, стала згасання g визначає відносну зміну амплітуди коливань за одиницю часу –секунду. Декремент згасання за визначенням є відношення амплітуд через період , (15.41) а логарифмічний декремент згасання за визначенням є (16.41) і в іншому виді . Добротність коливальної системи за визначенням є відношення її енергії в деякий момент часу до втрат енергії за проміжок часу, що дорівнює періоду коливань , (17.41) де E(t) ¾ енергія системи в момент часу t, ¾ робота системи проти сил опору за період Т. Прийнявши до уваги, що енергія пропорційна квадрату амплітуди, можемо записати вираз для добротності у вигляді: Þ . Для малих сил опору g<<1 з достатньою точністю можна записати: . Тепер добротність коливальної системи з незначними силами опору можна оцінити в такий спосіб: Q= . (18.41) Екпериментальні дослідження. Експериментальна установка для визначення характеристик (параметрів) фізичного маятника (Рис.2.41) складається з основи, на якій встановлені блок живлення та керування і стойки, яка може бути нахилена відносно вертикалі на певний кут α за допомогою черв'ячного механізму (механізм нахилу); в верхній частині стойки знаходиться кронштейн із спеціальним блоком для кріплення нитки підвісу маятника із тілом маятника; довжину маятника можна змінювати в певних межах для встановлення укажчика положення маятника відносно фотодатчика, що закріплений разом з механізм нахилу і шкалою для відрахунку кута відхилення маятника β на стойці. При куті нахилу стойки α = 0 маятник здійснює вільні коливання як математичний маятник. При α > 0 тіло маятника, коливаючись, буде перекочуватись по поверхні спеціальної підкладки і коливання стануть згасаючими. На передній панелі блока живлення та керування знаходяться: кнопка «Мережа(Сеть)» для вмикання установки, кнопка «Сброс» для установки на нуль показань цифрових індикаторів, кнопка «Стоп» для зупинки процесу вимірювання, цифрові індикатори числа коливань маятника і часу коливань. Установка працює таким чином: В початковому (до включення) - рівноважному стані, встановлюється певна довжина підвісу маятника шляхом обертання блока на кронштейні: кронштейн з фотодатчиком розташовується так, щоб укажчик маятника співпадав з нульовою позначкою шкали і знаходився між освітлювачем і приймачем датчика; після приєднання блока живлення та індикації до електричної мережі і включення його натисканням кнопки «Мережа(Сеть)», маятник відхиляють на кут β =(5-10)0 по шкалі і, утримуючи його, натисканням кнопки «Сброс» встановлюють на нульові позначки цифрові індикатори, а потім відпускають маятник, який починає рухатись, здійснюючи коливання; при цьому секундомір блока живлення та керування автоматично починає відлік часу коливань та кількость періодів коливань, значення яких висвітлюється індикатором; процес вимірювання зупиняється натисканням кнопки «Стоп». За допомогою механізму нахилу, який має ручку (коловорот)для обертання черв'ячного механізму і свою шкалу, можна регулювати кут нахилу α стойки, змінюючи тим самим силу притискання N тіла маятника до підкладки і, відповідно, силу опору рухові– силу тертя кочення FТ. Розглянемо докладніше процес кочення (див. Рис.3.41) кулеподібного тіла радіуса r по горизонтальній поверхні і оцінимо силу опору рухові. Опір рухові виникає внаслідок деформації тіла в точці контакту з поверхнею під дією сили притискання. Для кочення тіла необхідно, щоб момент сил , через це деформація площини кочення буде несиметричною відносно точки контакту А і точка прикладення сили притискання, яка є протидіючою нормальній складовій реакції опори і пропорційна силі деформації, буде зміщена в точку В. При невеликих швидкостях рівномірного руху можна вважати, що , і тоді FТ» m×N, де m - коефіцієнт тертя кочення. Прийнявши це припущення, величину коефіцієнта тертя можна оцінити, розрахувавши роботу А Т на подолання сил тертя в процесі коливань маятника. Очевидно, робота на подолання сил тертя буде чисельно дорівнювати зміні потенційної енергії коливань АТ = DP. (19.41) З геометричних міркувань (Рис.4.41) потенційна енергія відхиленого на площині Р тіла маятника масою m дорівнює В процесі коливань через дію сил тертя амплітуда коливань зменшуватиметься і при зменшенні кута відхилення маятника на потенційна енергія зменшиться на . (20.41) В той самий час робота на подолання сил тертя за одне коливання може бути оцінена величиною середньої сили тертя , що діє на шляху, рівному повній довжині дуги відхилення маятника . . (21.41) Якщо маятник здійснить коливань і кут відхилення зменшиться від початкового β0 до βn, то вираз (19.41) після інтегрування (20.41) набуде вигляду (22.41) Прийнявши до уваги, що і відповідно до (14.41) βn= β0/е (е = 2,7182818…), та для малих кутів відхилення маятника () і невеликих кутів нахилу стойки (), отримаємо з (22.41) вираз для оцінки коефіцієнта тертя кочення (23.41) Увага! При розрахунках за формулою (23.41) треба пам'ятати, що величину кута α необхідно визначати в радіанах. Виконання вимірювань: 6. Встановити максимальну довжину L нитки підвісу маятника так, щоб укажчик маятника співпадав з нульовою позначкою шкали і знаходився між освітлювачем і приймачем датчика; 7. За допомогою механізму нахилу стойки, шляхом обертання ручки черв'ячного механізму встановити кут нахилу α0= 50 по шкалі; 8. приєднати блок живлення та індикації до електричної мережі і включити його натисканням кнопки «Мережа(Сеть)»; 9. маятник відхилити на кут β0 =100 по шкалі і утримуючи його, встановити на нульові позначки цифрові індикатори натисканням кнопки «Сброс»; 10. відпустити маятник і провести вимірювання часу релаксації tе і числа ne повних коливань, значення яких будуть відбиті цифровими індикаторами блока живлення та індикації: лічильник часу включається автоматично при пуску маятника, а зупинити його необхідно натисканням кнопки «Стоп» в момент часу, коли амплітуда коливань маятника досягне значення βе=β0/е=100/ 2,71828» 3,70 (на шкалі маятника є відповідна відмітка); виміряний інтервал часу дорівнює часу релаксації, визначений результат занести в Таблицю 1.41; 11. Значення ne визначити за відповідним цифровим індикатором і результат занести в Таблицю 1.41; 12. Виконати вимірювання 5-7 разів, а результати вимірювання tе і ne занести до Таблиці 1.41.; 13. За допомогою механізму нахилу стойки, шляхом обертання ручки черв'ячного механізму встановити кут нахилу α0= 100 по шкалі; 14. Виконати вимірювання за п.п.4-7, а результати вимірювання tе і ne занести до Таблиці 1.41.; 15. За допомогою механізму нахилу стойки, шляхом обертання ручки черв'ячного механізму встановити кут нахилу α0= 150 по шкалі; 16. Виконати вимірювання за п.п.4-7, а результати вимірювання tе і ne занести до Таблиці 1.41.; 17. Використовуючи значення виміряних величин tе і ne, за методикою опрацювання результатів прямих вимірів [6.41], визначити найбільшімовірні значення виміряних величин і межі їх довірчих інтервалів ; результати розрахунків занести до Таблиці 1.41.; 18. За формулами (14.41), (16.41),(18.41) та (23.41) розрахувати значення сталої згасання коливань γ, логарифмічного декремента згасання lnd, добротності коливальної системи Q та коефіцієнта тертя кочення μ; результати розрахунків занести до Таблиці 1.41.; Таблиця 1.41.
19. Межі довірчих інтервалів сталої згасання коливань Δ γ, логарифмічного декремента згасання Δ d, добротності коливальної системи Δ Q та коефіцієнта тертя кочення Δ μ оцініти за формулами ; (24.41) результати розрахунків занести до Таблиці 1.41.; 15. Значення коефіцієнту опору r і його довірчого інтервалу Δr з врахуванням (3.41) та того, що момент інерції застосованого маятника J=m·L2 (m - маса маятника, L – довжина підвісу), оцініти за формулами ; (25.41) результати розрахунків занести до Таблиці 1.41.; 16. Проаналізувати отримані результати, оцінити визначені характеристики (параметри) і зробити висновки щодо характеру коливань фізичного маятника.
Використання Мсad: ПрикладвикористанняМсad для знаходження величини характеристик фізичного маятника наведений в методичному посібнику [6.41]. Контрольні питання. 1. Вивести та розв’язати рівняння вільних згасаючих коливань фізичного маятника. 2. Дати визначення та одержати вирази для характеристик вільних згасаючих коливань: часу релаксації, логарифмічного декременту згасання, добротності. ЛІТЕРАТУРА 1.41. Кучерук І.М., Горбачук І.Т., Луцик П.П.. Загальний курс фізики: Навчальний посібник. –Т. 1.: Механіка. Молекулярна фізика і термодинаміка. – К.: Техніка, 1999. – 536 с. 2.41 Дущенко В.П., Кучерук І.М. Загальна фізика. Фізичні основи механіки. Молекулярна фізика і термодинаміка. – К.: Вища школа, 1993. – 431 с. 3.41 Загальна фізика. Лабораторний практикум: Навч. посібник за заг.ред. І.Т. Горбачука. – К.: Вища школа, 1992. – 509 с. 4.41 Д.В. Сивухин. Общий курс физики. Т. І. Механика. – М.: Наука, 1989. – 576 с. 5.41 Трофимова Т.И. Курс физики. – М.: Высш. шк., 2000. – 478 с. 6.41 Опрацювання результатів вимірювання при виконанні лабораторних робіт фізичного практикума з використанням математичної системи Mcad. (Методичні вказівки до лабораторного практикуму для студентів усіх спеціальностей). А.О.Потапов, А.І.Мотіна. - К.: КНУТД, 2004.- 112 с.
Лабораторна робота № 43
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 332; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.48.24 (0.007 с.) |