Отделение чистой математики от прикладной 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Отделение чистой математики от прикладной



· Развиваются абстрактные области (раньше математика привязана к реальности: производная — скорость изменения и т.п.), которые не находят аналога в реальности, Представление о математики, как о наборе формальных теорий возникают благодаря Гильберту: рассматривает аксиому, как абстрактное исходное положение, а не как очевидность, которую невозможно доказать ввиду ее простоты. В результате порождается огромное число теорий, например, геометрия Евклида, неевклидовая геометрия, теория множеств, логика. Объектами математического исследования становятся абстрактные (а не числовые) объекты: события, предикаты, множества, векторы, матрицы, функции, т. д. Теперь для описания физической реальности можно использовать любую из этих теорий, если она адекватно описывает результаты.

С другой стороны возрастает потребность в вычислениях, в том числе приближенных и эта сторона математики выделяется в прикладную математику.

Естествознание

Новая физика: теория относительности и квантовая механика

Открытия Максвелла и Герца (конец 19 века).

Появляется теория электричества и магнетизма.

· Теория относительности, квантовая механика (начало 20 века).

Физика становится ненаглядной, сильно математизированной.

Новая биология: эволюционная теория и генетика

· Теория эволюции Дарвина (19 века), Чарльз Дарвин выдвигает идею естественного отбора в "Происхождении видов " 1859 года.

· Появляется также клеточная теория, палеонтология.

· Появляется идея инфекционного агента (микробы, вирусы).

· Генетика (20 век)

Химия

Периодическая система Менделеева.

Переход к "большой науке"

Появление экпериментальной психологии.

Появляется слово "ученый". Такая профессия появляется только в 19 веке. До этого наука - это род деятельности, хобби. Наука становится массовой, появляются научные институты, лаборатории, Академии.

Особенности науки: наука становится узкоспецилизированной потребность в технических достижениях наличие нерешенных проблем. Рост числа ученых. Примерно 70% ученых когда-либо живших и работавших - в 60-е годы. Наука становится коллективной.

В начале XX века исчезают люди, которые представляют себе, что проиходит во всех областях науки. И даже в отдельных ее областях.

Увеличивается социальное значение науки. При этом возрастает сила науки, мощь технологических разработок. Присутствие науки начинает беспокоить общество, политики обращают внимание на науку, особзнавая ее мощь и понимая, что это огромный рычаг.

Особенности науки XX века

Для современной науки характерно и то, что можно назвать гуманитаризацией, – возрастание удельного веса общественных проблем и растущее воздействие разработки общественно-научных проблем на естествознание.

Роль физики в современной науке не похожа на роль механики в XVII-XVIII веках, когда механические законы претендовали на место того носителя космической гармонии, к которому в последнем счете сводятся все закономерности бытия. Но физика занимает в современной науке совсем иное место и по сравнению с XIX веком. Тогда физика противостояла диктатуре механики и, подобно другим дисциплинам, утверждала несводимость и специфичность своих законов. Сейчас она объединяет микромир и мегамир и в этом смысле, не покушаясь на специфичность других дисциплин, создает неклассическое представление о иерархии бытия, в которой Метагалактика сближается с элементарными частицами. Генезис такой, неизвестной прошлому, картины мира имеет важное значение для выяснения связи науки и философии. Подобная связь в определенной степени является импульсом и вместе с тем результатом распространения понятий современной физики на другие отрасли знания.

Но ответ на вопрос: «Что такое наука XX века?» – включает определение зависимости самого периода истории от состояния науки. Действительно, век разума, XVIII век, был периодом, когда идеи великих рационалистов предыдущего столетия приобрели историческое бытие и стали оказывать решающее воздействие на реальные судьбы людей. В этом столетии английская промышленная революция превратила рациональную схему мироздания – классическую механику в научную основу машинной индустрии. В этом же столетии плеяда великих мыслителей-рационалистов привлекла к суду отвлеченного разума все общественные институты.

В XIX веке рационализм воплотился в систему представлений – стройную, детально разработанную, проверенную экспериментами и практикой. Эта система казалась непоколебимой в своих основах, хотя и претерпевала глубокие изменения. В XIX веке люди узнали о неевклидовой геометрии, в которой перпендикуляры к одной и той же црямой пересекаются или, наоборот, расходятся. Они узнали много нового и о себе. Общественные отношения, которые представлялись незыблемыми, оказались преходящими, чреватыми социальными революциями.

XX век начался неисчезающими научными парадоксами. Наука XX века как бы для того, чтобы оправдать подобное хронологическое название, может начать свою историю с 1900 года, когда М. Планк нашел, что излучение света происходит не непрерывно, а минимальными порциями, квантами. Вскоре, в 1905 году, А. Эйнштейн разъяснил, почему свет распространяется с одной и той же скоростью относительно тел, движущихся навстречу световому лучу, и относительно тел, которые лучу приходится догонять.

Для XX века характерна огромная концентрация материальных и интеллектуальных усилий общества, направленных на развитие науки. Поражают масштабы общественного труда, уделяемого исследованию природы. Наблюдаются несопоставимые с прошлым темпы роста числа ученых.

По-видимому, в будущем будет происходить с нарастающей скоростью более глубокий и органичный процесс включения исследовательских задач в содержание труда. При быстром и радикальном изменении технологии, основанном на переходе к принципиально новым физическим процессам, производство, его реконструкция и эксперимент сливаются воедино.

Как же назвать XX век в его зависимости от науки? Веком атома? Веком космоса? Веком кибернетики?… Список возможных названий можно было бы значительно расширить. В литературе мелькают и другие названия: «век полупроводников», «век информации», «век биологии».

Общим эффект науки XX века, характерный для всех отраслей производства, для культуры и стиля мышления – несравнимый с прошлым динамизм развития различных областей общественной жизни, непосредственно зависящий от характера современной науки.

Наука XX века – прежде всего неклассическая наука. И не только потому, что она отказалась от классических устоев, претендовавших на окончательный и абсолютно точный характер. Она неклассическая по своему стилю. Именно поэтому она приводит не только к незатухающей скорости научно-технического прогресса. Она ускоряет и технический, и культурный прогресс.

К концу XIX века сложилось довольно устойчивое представление о мире. В его основе лежала классическая механика, законы Ньютона, которые казались непоколебимыми. На них наслаивались законы физики.

В целом наука XIX века склонялась к мысли о законченной картине мира, к представлению о том, что эта картина мира завершена в ее фундаментальных основах. Английский физик Дж. Дж. Томсон утверждал, что науке осталось лишь уточнять детали, поскольку в основном человек уже знает, как устроен мир. Конечно, такой крайний взгляд не был общим. В основе этой схемы лежит идея сохранения основных законов бытия при переходе от одного звена иерархии вещества к другим, от атома к молекуле, от молекулы к макроскопическим телам, в частности к живому организму, затем к планетам, к солнечной системе, к звездам, к галактике. В начале этой иерархии находится атом. Атомы считались твердыми шариками, обладающими различной массой и различными физическими и химическими свойствами. Было известно несколько десятков различных типов атомов. Второе звено иерархии – молекула. В течение XIX века химия узнала о структуре громадного количества сложных веществ и определила состав их молекул. О природе сил, связывающих атомы в молекулы, знали так же мало, как о природе различий между атомами. Но об этом не слишком беспокоились. Наука могла идти вперед, не углубляясь в эти вопросы. То же можно сказать и о больших, включающих системах. Что касается живых организмов, то наука всесторонне изучила макроскопические законы естественного отбора, но остановилась перед проблемой наследственности и изменчивости организмов. Благодаря Г. Менделю стали известны некоторые законы наследственности, но природа их не была раскрыта. Теория Дарвина представлялась мощной демонстрацией универсальности классической науки. Она показала, что материя, состоящая из дискретных частей, обладающих свойствами притяжения и отталкивания и подчиняющихся в своем поведении законам классической механики, может эволюционировать и дойти до высокоорганизованных структур, до той целесообразности, которая всегда поражала людей при взгляде на органический мир.

Дальше простирались еще более высокие звенья иерархии – солнечная система, само Солнце, еще дальше – звезды, а еще дальше – внегалактические туманности, иные галактики. Этот мир казался царством Ньютона.

В целом XX век застал очень стройное и, казалось, достоверное в своей основе здание науки предыдущего столетия. В XX веке это здание не было разбито. Оно только зашаталось, и научная революция нашла для него новый фундамент, на котором старые знания получили ограниченное место. Это следует подчеркнуть. Научная революция не была очищением площадки для нового строительства. В науке не бывает катаклизмов, которые Ж. Кювье видел в прошлом Земли. История науки – непрерывный процесс. Н. Бор в начале нашего столетия, создавая модель атома, выдвинул принцип соответствия: при некоторых предельных условиях соотношения квантовой механики переходят в соотношения классической механики. Теория относительности Эйнштейна в случае медленных движений и процессов, при которых поглощаются или выделяются не слишком большие энергии, приходит к соотношениям механики Ньютона. Наука XX века подошла к классическому наследству как к совокупности теорий, уже не являющихся абсолютно справедливыми, абсолютно точными и абсолютно общими. Они становятся относительными и ограниченными, но получают более солидное обоснование.

Что застает в науке XXI век? Об этом трудно сказать – развитие науки приобрело такую стремительность, что за оставшиеся два десятилетия может произойти много неожиданного. Но кое-что можно сказать с большой достоверностью.

В XXI веке наука должна все осуществлять все более глубокие поиски фундаментальных оснований. Новая астрономическая революция позволила узнать много совершенно неожиданного о галактиках, находящихся от нас на расстояниях в миллиарды световых лет. Структура и эволюция Вселенной не могут быть познаны без дальнейшего коренного фундаментального преобразования основных физических принципов, основных принципов математики, без преобразования самой логики. Они не могут быть познаны и без нового представления об элементарных частицах.

Трудно сказать, к чему приведет развитие подобных идей. Но они иллюстрируют однозначный и достоверный прогноз: XXI век застанет в науке начавшийся процесс непрерывных поисков новых фундаментальных принципов. В этом великий вклад науки нашего века в историю цивилизации. Теперь уже покончено с представлением о неподвижном фундаменте науки, на котором меняется лишь надстройка.

Часть II (Современная философия науки)

 



Поделиться:


Последнее изменение этой страницы: 2021-07-18; просмотров: 56; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.15.1 (0.01 с.)