Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нормальная наука: ее связь с историейСодержание книги
Поиск на нашем сайте
До сих пор я говорил о том, что если существуют революции, то должна существовать нормальная наука. Здесь допустим вопрос: существует ли то и другое? Туллин задает такой вопрос, а мои критики‑попперианцы затрудняются увидеть в истории нормальную науку, от существования которой зависит существование революций. Вопросы Туллина особенно ценны, и для ответа на них мне потребовалось бы привлечь некоторые подлинные трудности, представленные в «Структуре научных революций», и соответствующим образом изменить мое первоначальное изложение. К сожалению, это не те трудности, которые видит Туллин. Прежде чем выделить то, о чем он говорит, нужно подождать, пока уляжется пыль, которую он поднял. Хотя за семь лет, прошедших после публикации «Структуры», в моей позиции произошли важные изменения, мой интерес к макрореволюциям не сменился интересом к микрореволюциям. Эту смену интересов Туллин отчасти якобы «обнаруживает», сравнивая доклад, прочитанный в 1961 году, с книгой, опубликованной в 1962 году[112]. Однако доклад был написан и опубликован после выхода книги, и первое примечание в нем конкретизирует отношение, которое Туллин извращает. Другое свидетельство смены моих интересов Туллин обнаруживает, сравнивая книгу с рукописью моей статьи, открывающей данный том[113]. Однако никто не замечал подчеркиваемых им различий, а моя книга с полной ясностью говорит о моих интересах, которые Туллин обнаруживает только в более поздних моих сочинениях. Например, в число революций, обсуждаемых в книге, включены такие открытия, как открытие Х‑лучей и планеты Уран. «По‑видимому, – говорится в Предисловии, – распространение [термина «революция» на подобные эпизоды] выходит за границы обычного словоупотребления. Тем не менее я буду продолжать говорить о таких открытиях как о революционных, поскольку мне представляется важным соотнести их структуру со структурой, скажем, Коперниканской революции»[114]. Короче говоря, научные революции никогда не интересовали меня как «что‑то такое, что в отдельной области науки происходит не чаще чем один раз в двести лет»[115]. Меня всегда привлекало, что Туллин находит у меня лишь в последние годы: изучение конкретных случаев концептуальных изменений того типа, который часто встречается в науке и играет фундаментальную роль в ее развитии. Аналогия с геологией, о которой говорит Туллин, полезна, однако не в том смысле, в котором он ее использует. Он обращает внимание на ту сторону споров униформистов с катастрофистами, которая касается возможности приписать катастрофы естественным причинам, и полагает, что как только эти споры закончились, «“катастрофы” стали чем‑то единообразным и закономерным – подобно другим геологическим и палеонтологическим явлениям» (с. 43, выделено мной. – Т.К.). Однако использование им термина «единообразный» ничем не обосновано. Помимо вопроса о естественных причинах, эти споры имели вторую важную сторону – вопрос о существовании катастроф, о том, можно ли приписывать основную роль в геологической эволюции землетрясениям и извержениям вулканов, а не явлениям эрозии и осадочным отложениям. Спор по этому вопросу униформисты проиграли. Когда дискуссии окончились, геологи признали существование двух видов геологических изменений, обусловленных естественными причинами. Одни происходят постепенно и единообразно, другие возникают внезапно и носят катастрофический характер. Даже в наши дни волны прилива не рассматриваются как конкретный случай эрозии. Соответственно этому и мое утверждение состояло в том, что революции отнюдь не являются непостижимыми единичными событиями. Как и в геологии, в науке также существуют изменения двух видов. Нормальная наука представляет собой кумулятивный процесс, в котором убеждения, принятые научным сообществом, пополняются, уточняются и расширяют сферу своего применения. Ученые обучаются делать именно это, и главная традиция англоязычной философии науки вытекает из анализа образцовых произведений, в которых воплощено обучение такого рода. К сожалению, как отмечено в моей предыдущей статье, представители этой философской традиции обычно черпают примеры из изменений иного вида, которые затем соответствующим образом обрабатываются. В итоге почти не осознается широкая распространенность изменений, когда отбрасываются и заменяются фундаментальные концептуальные соглашения некоторой научной области. Конечно, как отмечает Туллин, эти два вида изменений тесно связаны между собой: в науке революции не более сокрушительны, чем в других сферах жизни, однако признание непрерывности развития, проходящего через революции, не должно побудить историков или кого бы то ни было отказаться от понятия революции. Слабая сторона «Структуры научных революций» – в ней только названо, но не проанализировано явление «частичной коммуникации». Частичная коммуникация никогда не была, как выражается Туллин, «полным [взаимным] непониманием» (с. 43). Этот термин обозначал проблему, требующую дальнейшего рассмотрения, а не нечто непостижимое. До тех пор, пока не исследуем ее тщательнее (я выскажу некоторые соображения по этому поводу), мы будем продолжать ошибаться относительно природы научного прогресса и познания в целом. Статья Туллина не убеждает меня в том, что все научные изменения мы должны истолковывать одинаково. Однако фундаментальный вопрос, поставленный в его статье, остается. Можем ли мы отличить простое уточнение и обобщение признанных убеждений от таких изменений, которые включают в себя их реконструкцию? В наиболее показательных случаях ответом будет очевидное «да». Теория спектра водорода Бора была революционной, в то время как теория тонкой структуры водорода Зоммерфельда – нет; астрономическая теория Коперника была революционной, а тепловая теория адиабатического давления таковой не была. Эти примеры слишком радикальны, чтобы быть вполне информативными: существовало слишком много различий между сопоставляемыми теориями, и революционные изменения затрагивали слишком многих. К счастью, мы можем не ограничиваться ими: теория электрической цепи Ампера была революционной (по крайней мере для французских ученых), поскольку разделила течение электричества и электростатические явления, которые до этого концептуально не различались. Опять‑таки и закон Ома был революционным и вызвал сопротивление, поскольку требовал объединения понятий, которые ранее применялись отдельно для тока и заряда[116]. С другой стороны, закон Джоуля – Ленца, связывающий тепло, генерируемое в проводнике, с сопротивлением и током, был продуктом нормальной науки, поскольку и количественные эффекты, и понятия, необходимые для их выражения, уже были известны. На уровне, который не был очевидно теоретическим, открытие кислорода Лавуазье (не Шееле и, безусловно, не Пристли) надо признать революционным, поскольку оно было неотделимо от новой теории горения и окисления. Однако открытие неона таковым нельзя считать, поскольку уже обнаружение гелия сопровождалось введением понятия инертного газа и существовала периодическая таблица. Интересно, как далеко может быть продолжен этот процесс разделения открытий? Меня часто спрашивали, было ли то или иное изменение «нормальным или революционным», и я обычно отвечал, что не знаю. Дело не в моей или чьей‑то еще способности ответить на этот вопрос в каждом возможном случае, а в том, применимо ли это подразделение к гораздо большему числу эпизодов, чем было рассмотрено до сих пор. Затруднения с ответом отчасти объясняются тем, что отличение нормальных эпизодов от революционных требует тщательных исторических исследований, но очень немногие периоды истории науки исследованы достаточно глубоко. Должно быть известно не только обозначение изменения, но также природа и структура групповых соглашений до и после этого изменения. Для установления этого часто необходимо также знать, как было воспринято изменение, когда его предложили впервые. (Именно здесь я чувствую наиболее острую потребность в дополнительных исторических исследованиях, хотя не согласен с выводами Перси Уильямса из наличия такой потребности и сомневаюсь, что результаты таких исследований приведут к сближению моей позиции и позиции сэра Карла.) Мои затруднения, однако, имеют более глубокий аспект. Хотя многое зависит от дальнейших исследований, требуются исследования не просто того вида, о котором говорилось выше. Кроме того, построение аргументации в «Структуре научных революций» несколько затемняет природу того, чего не хватает. Если бы я теперь переписал эту книгу, то существенно изменил бы ее построение. Суть проблемы в том, что для ответа на вопрос «нормальное или революционное?» сначала нужно спросить: для кого? Иногда ответить легко: коперниканская астрономия была революцией для всех; открытие кислорода было революцией для химиков, но не для, скажем, математиков‑астрономов, если их, в отличие от Лапласа, не интересовали вопросы химии и теплоты. Для последних кислород был просто другим газом, а его открытие лишь пополняло их знания, для астрономов принятие этого открытия не означало существенных изменений. Однако обычно нельзя выделить группы с общими когнитивными обязательствами, просто указав предметную область – астрономию, химию, математику и т. п. К сожалению, я поступал так здесь и в своей книге. Некоторые научные области, например, изучение теплоты, исследуются разными научными сообществами в разные периоды времени, а иногда и в одно время, не выделяясь в одну область какого‑то одного сообщества. К тому же, несмотря на то что ученые гораздо более единодушны в своей приверженности к общим обязательствам, чем представители, скажем, философии или искусства, в науке существует такая вещь, как школы, члены которых на один и тот же предмет смотрят с очень разных точек зрения. В первом десятилетии XIX века французские ученые, занимавшиеся электричеством, принадлежали к научной школе, в которую не входил почти ни один английский ученый, и т. д. Поэтому если бы я писал свою книгу сегодня, я начал бы ее с рассмотрения социальной структуры науки и не опирался бы при этом исключительно на общие сферы исследования. В настоящее время у нас очень мало информации о структуре научных сообществ, однако недавно эта область стала главным предметом исследования для социологов, да и историки обращают на нее все большее внимание[117]. Возникающие здесь проблемы отнюдь не являются тривиальными. Историки науки, обратившиеся к ним, уже не могут опираться только на технику историков мысли и должны использовать методы социальных историков и историков культуры. Хотя эта работа только началась, есть все основания надеяться, что она окажется успешной, в частности для развитых наук, исторические корни которых можно обнаружить в философских и медицинских сообществах. Здесь можно было бы получить перечень различных групп специалистов, которые разрабатывали данную науку в разные периоды времени. Единицу анализа могли бы образовать представители некоторой специальности – люди, объединенные одинаковым образованием и ученичеством, знающие о работе друг друга и отличающиеся относительной полнотой профессиональных обязательств и относительным единодушием профессиональных оценок. В зрелой науке члены таких сообществ рассматривали бы себя (и рассматривались другими) как тех, кто отвечает за данную область и данное множество целей, включая подготовку своих последователей. Однако исследование обнаружит также существование конкурирующих школ. Типичное сообщество, по крайней мере в современной науке, может состоять из сотни членов, а иногда даже значительно меньше. Отдельные люди, особенно талантливые, могут входить в разные такие группы в одно время или в разные периоды жизни, и они будут изменять свое мышление, переходя из одной группы в другую. Подобные группы следует рассматривать как единицы, производящие научное знание. Они не могут функционировать без индивидов, однако сама идея научного знания как личного продукта приводит к тем же проблемам, с какими сталкивается понятие личного языка. Ни знание, ни язык не остаются прежними, когда их мыслят как нечто такое, чем может обладать и что может развивать индивид. Поэтому именно в отношении таких групп должен ставиться вопрос: нормальное или революционное? Тогда многие эпизоды не будут революционными ни для одного сообщества; другие будут революционными только для отдельной небольшой группы; третьи – для нескольких сообществ, и очень немногие будут революционными для всей науки. Поставленный таким образом, этот вопрос, я думаю, получит тот точный ответ, которого требует мое разграничение. Для обоснования своей надежды я применю этот подход к некоторым конкретным случаям, которые мои критики использовали для выражения сомнений в существовании и роли нормальной науки. Но сначала я должен указать на один аспект моей нынешней позиции, который гораздо более отчетливо, чем нормальная наука, выражает глубокое расхождение между моей позицией и точкой зрения сэра Карла. Программа, набросок которой был дан выше, еще отчетливее, чем раньше, выражает социологический базис моей позиции. Еще важнее то, что она яснее говорит о том, что я рассматриваю научное знание как продукт множества профессиональных сообществ. Сэр Карл видит «величайшую опасность… специализации», и контекст, в котором высказана эта оценка, говорит о том, что такую же опасность он видит в нормальной науке[118]. Однако в отношении первой битва была проиграна с самого начала. Дело не в том, что у кого‑то могут быть хорошие основания противостоять специализации и даже достигнуть успеха, а в том, что такая попытка была бы направлена против самой науки. Когда сэр Карл противопоставляет науку философии, что он делает в начале своей статьи, или физику – социологии, психологии и истории, о чем говорится в конце статьи, он сопоставляет эзотерические, изолированные и замкнутые дисциплины с наукой, которая обращается к аудитории, значительно превосходящей количество представителей профессии. (Наука – не единственная деятельность, участники которой разбиваются на сообщества, однако только в ней каждое сообщество является своей собственной аудиторией и своим собственным судьей[119].) Эта противоположность не является совершенно новой, характерной, скажем, для Большой науки и современного театра. Математики и астрономы были эзотерической группой во времена античности; механики стали такой группой после Галилея и Ньютона; учение об электричестве – после Кулона и Пуассона; и так до современной экономической теории. Чаще всего переход к замкнутым группам специалистов был частью перехода к зрелости – того перехода, который я рассматривал выше, когда говорил о возникновении решения головоломок. Трудно считать эту особенность несущественной. Возможно, наука вновь могла бы стать похожей на философию, чего хотел бы сэр Карл, однако подозреваю, тогда он восхищался бы ею гораздо меньше. Завершая эту часть моего рассмотрения, я обращаюсь к конкретным случаям, с помощью которых мои критики демонстрировали трудности, связанные с обнаружением нормальной науки и ее функций в истории. Сначала я остановлюсь на проблеме, поставленной сэром Карлом и Уоткинсом. Они оба указывают на то, что не существовало никакого консенсуса по фундаментальным вопросам «в течение всей длительной истории теории материи: от досократиков до наших дней здесь велись бесконечные споры между сторонниками непрерывной и дискретной концепциями материи, между различными атомистическими теориями с одной стороны и сторонниками эфира, волновой теории и теории поля – с другой»[120]. Фейерабенд высказывает очень похожее замечание относительно второй половины XIX века, противопоставляя механистический, феноменологический и теоретико‑полевой подходы к проблемам физики[121]. Я согласен со всеми описаниями моих критиков. Однако термин «теории материи» никогда, по крайней мере до последних тридцати лет, не обозначал предмета науки, отличного от предмета философии, и никогда не существовало научного сообщества или хотя бы небольшой группы ученых, специально занимающихся этим предметом. Я не хочу сказать, что ученые не используют теорий материи, что на их работу такие теории не оказывают никакого влияния или что результаты их исследований не играют роли в теориях материи, которых придерживаются другие. Однако вплоть до последнего столетия теории материи были скорее средством для исследования, а не предметом изучения. Тот факт, что разные специалисты избирают различные средства и иногда критикуют друг друга за этот выбор, не означает, что они не работают в рамках нормальной науки. Часто высказываемое общее положение о том, что физики и химики до механики пользовались типичными и противоречивыми теориями материи, слишком упрощает суть дела (отчасти потому, что его точно так же можно высказать по поводу разных химических специальностей даже в наши дни). Однако сама возможность таких обобщений указывает способ рассмотрения вопросов, поднятых Уоткинсом и сэром Карлом. Что касается вопроса о материи, то представители определенного сообщества или школы не обязаны всегда принимать какую‑то теорию материи. Примером может служить химия на протяжении первой половины XIX столетия. Хотя многие из ее важнейших результатов – постоянство пропорций, весовые соотношения и т. д. – были разработаны и получили общее признание благодаря атомной теории Дальтона, ученые, пользовавшиеся ею, после получения результата могли принимать самые разнообразные точки зрения по поводу природы и даже самого существования атомов. Их наука или по крайней мере многие ее разделы не зависели от существования общего представления о материи. Даже там, где мои критики допускают существование нормальной науки, они постоянно испытывают затруднения, пытаясь обнаружить кризис и его роль. Уоткинс приводит пример, но его истолкование этого примера вытекает из способа анализа, упомянутого выше. Законы Кеплера, напоминает нам Уоткинс, были несовместимы с планетарной теорией Ньютона, однако астрономы не слишком беспокоились по этому поводу. Следовательно, заключает Уоткинс, революционному истолкованию планетарных движений Ньютоном вовсе не предшествовал кризис в астрономии. Но почему должен был возникнуть кризис? Прежде всего, переход от орбит Кеплера к орбитам Ньютона не был (я опускаю обоснование) революцией для астрономов. Большинство из них следовало за Кеплером и объясняло форму планетных орбит скорее с помощью механических, а не геометрических понятий. (Иначе говоря, их объяснения не ссылались на «геометрическое совершенство» эллипса или подобные характеристики, которых орбиты лишались вследствие пертурбаций Ньютона.) Хотя переход от круга к эллипсу был для них частью революции, небольшого изменения механизма было достаточно для отхода от строгой эллиптичности. Более важно то, что улучшение кеплеровских орбит Ньютоном было побочным продуктом его работы в области механики, на которую мимоходом ссылались астрономы‑математики в предисловиях к своим работам, но которая теперь стала играть громадную роль в их деятельности. Однако в механике, где Ньютон стимулировал революцию, со времен признания коперниканства существовал широко осознаваемый кризис. Контрпример Уоткинса является лучшим свидетельством в мою пользу. Наконец, я обращаюсь к примеру Лакатоса – к исследовательской программе Бора. Этот пример иллюстрирует мои основные затруднения в понимании его превосходной статьи и показывает, сколь глубоким может быть даже ослабленное попперианство. Хотя он пользуется иной терминологией, его аналитический аппарат очень тесно связан с моим собственным: жесткое ядро, работа в защитном поясе гипотез и стадия регресса – все это аналогично моей парадигме, нормальной науке и кризису. Однако в некоторых важных отношениях Лакатос не способен увидеть, каким образом функционируют эти понятия, даже когда он применяет их к тому, что я считаю идеализированным случаем. Попробую продемонстрировать часть того, что он мог бы заметить и высказать. Мой вариант – подобно его собственному или подобно любому другому отрывку исторического нарратива – представляет собой рациональную реконструкцию. Но я не буду просить читателя отнестись к моему рассказу критически и не буду добавлять примечаний, указывающих, где мое повествование ложно[122]. Рассмотрим понимание Лакатосом источника Боровского атома. «Основной проблемой, – пишет он, – была… устойчивость атома Резерфорда, ибо, согласно хорошо подтвержденной электромагнитной теории Максвелла – Лоренца, они должны были распадаться»[123]. Это – подлинно попперианская проблема (не головоломка Куна), порожденная конфликтом между двумя хорошо подтвержденными частями физики. Вдобавок в какое‑то время она могла представлять собой потенциальный пункт для критики. Эта проблема возникла вовсе не с моделью Резерфорда 1911 года: нестабильность представляла такое же затруднение для большинства более ранних моделей атома, включая модели Томсона и Нагаоки. Кроме того, эта проблема была решена (в некотором смысле) в знаменитой, состоящей из трех частей, статье Бора 1913 г., которая и открыла революцию. Неудивительно, что Лакатосу хотелось, чтобы она стала «основной проблемой» для исследовательской программы, которая произвела революцию, однако таковой ее, очевидно, считать нельзя[124]. На самом деле основанием послужила вполне нормальная головоломка. Бор намеревался улучшить физические аппроксимации в статье Ч.Г. Дарвина о потере энергии заряженной частицей, проходящей через материальную преграду. В процессе работы он сделал поразившее его открытие, что атом Резерфорда в отличие от других известных моделей был механически нестабилен и что планковские ad hoc средства повышения его устойчивости давали многообещающее объяснение периодичности в таблице Менделеева, о чем он совсем не думал. В этот момент его модель еще не была чем‑то особенным, Бор не предполагал применять ее к объяснению спектров атомов. Он сделал этот шаг, когда попытался совместить свою модель с моделью, разработанной Дж. Николсоном, и при этом столкнулся с формулой Бальмера. Как это случилось со многими другими исследованиями, вызвавшими революцию, важнейшие результаты Бора 1913 года были продуктом исследовательской программы, направленной на цели, весьма далекие от того, что получилось. Несмотря на то что он не смог стабилизировать модель Резерфорда с помощью квантования, поскольку не осознавал кризиса, порожденного в физике работой Планка, его работа с особой ясностью демонстрирует революционную силу нормальных исследовательских головоломок. Теперь посмотрим на заключительную часть истории Лакатоса, которая повествует о регрессивной фазе старой квантовой теории. В основном его рассказ верен, и я отмечу лишь некоторые пункты. С 1900 г. среди физиков все шире распространялось убеждение в том, что кванты Планка внесли в физику фундаментальное противоречие. Сначала многие физики попытались отделаться от них, однако после 1911 г. и, в частности, после появления атома Бора эти попытки постепенно прекратились. Больше десяти лет Эйнштейн оставался единственным известным физиком, прилагавшим усилия для устранения этого противоречия. Другие физики научились жить с противоречием и пытались решать технические головоломки с помощью имеющихся средств. В области изучения спектров излучения атомов, структуры атомов и удельной теплоемкости они добились выдающихся достижений. Хотя внутренняя противоречивость физической теории широко осознавалась, физики тем не менее продолжали пользоваться ею, и в период между 1913 и 1921 гг. сделали целый ряд выдающихся открытий. Однако достаточно быстро, начиная с 1922 г., на фоне всех этих успехов выделились три проблемы – модель гелия, эффект Зеемана и оптическая дисперсия, – которые, в чем постепенно убедились физики, не могли быть решены имеющимися в их распоряжении средствами. В результате многие из них стали изобретать все более безумные варианты старой квантовой теории, чтобы справиться с указанными тремя проблемами. Именно этот последний период, начавшийся в 1922 г., Лакатос называет регрессирующей стадией программы Бора. Для меня же это классический пример кризиса, нашедший отражение в публикациях, переписке и анекдотах. Мы рассматриваем его почти одинаково. Поэтому Лакатос может закончить свой рассказ. Для тех, кто чувствовал этот кризис, две проблемы из трех, спровоцировавших его, оказались чрезвычайно информативными, а именно проблема дисперсии и эффект Зеемана. Посредством серии последовательных шагов в их решении, слишком сложных, чтобы говорить о них здесь, физики сначала в Копенгагене приняли модель атома, в которой так называемые виртуальные осцилляторы связывали дискретные квантовые состояния, затем пришли к формуле для теоретико‑квантовой дисперсии и, наконец, к матричной механике, которая положила конец кризису спустя три года после его начала. Таким образом, регрессивная фаза старой квантовой теории предоставила квантовой механике и основания, и новые технические средства. Насколько мне известно, в истории науки нет более ясного и убедительного примера, демонстрирующего креативные функции нормальной науки и кризиса. Однако Лакатос игнорирует этот сюжет и сразу совершает прыжок к волновой механике – второй и, как кажется, совершенно иной формулировке новой квантовой теории. Сначала он описывает регрессирующую стадию старой квантовой теории как наполненную «еще более бесплодными противоречиями и еще большим количеством гипотез ad hoc» (что касается «ad hoc» и «противоречий», то это верно, но слово «бесплодные» здесь совершенно ошибочно; эти гипотезы привели не только к матричной механике, но и к спину электрона). Затем он разрешает кризис с помощью фокуса, похожего на извлечение кролика из шляпы: «Вскоре появилась конкурирующая исследовательская программа: волновая механика, [которая] быстро догнала, победила и вытеснила программу Бора. Статья де Бройля вышла, когда программа Бора регрессировала. Однако это была лишь случайность. Интересно, что бы произошло, если бы де Бройль опубликовал свою статью не в 1924, а в 1914 году?»[125] Ответ на последний вопрос ясен: ничего бы не случилось. И статья де Бройля, и путь от нее к волновому уравнению Шредингера были результатом развития, которое происходило после 1914 года: результатом работы Эйнштейна и самого Шредингера, а также открытия эффекта Комптона в 1922 г.[126]. Даже если бы все это не было подробно отражено в документах, разве можно объяснить простой случайностью одновременное появление двух независимых и на первый взгляд совершенно разных теорий, способных разрешить кризис, ставший заметным лишь в последние три года? Будем более внимательны. Хотя Лакатос не замечает существенной креативной функции кризиса старой квантовой теории, он не ошибается относительно ее значения для создания волновой механики. Волновое уравнение было ответом не на тот кризис, который начался в 1922 г., а на более ранний, порожденный работой Планка 1900 г., – кризис, на который после 1911 г. большинство физиков перестало обращать внимание. Если бы Эйнштейн не испытывал глубокую неудовлетворенность по поводу фундаментальных противоречий старой квантовой теории (и если бы он не связал эту неудовлетворенность с решением конкретной технической головоломки, связанной с феноменом электромагнитных флуктуаций), волновое уравнение не смогло бы появиться тогда, когда оно появилось. Путь, который привел к его появлению, был иным, нежели тот, что привел к возникновению матричной механики. Однако ни независимость этих теорий, ни их взаимосвязь не были случайностью. Среди различных результатов, которые связали их воедино, была, например, убедительная демонстрация Комптоном в 1922 г. свойств дискретности света – демонстрация, которая, в свою очередь, была побочным результатом чрезвычайно тонкого нормального исследования рассеяния Х‑лучей. Прежде чем рассматривать идею волн материи, физики должны были сначала серьезно отнестись к идее фотона, а на это до 1922 г. оказались способны лишь немногие из них. Работа де Бройля начиналась с теории фотона, главная ее цель состояла в том, чтобы примирить закон излучения Планка с дискретной структурой света. Волны материи появились в ходе этого исследования. Сам де Бройль не нуждался в открытии Комптона, чтобы признать существование фотонов, однако с его аудиторией – как во Франции, так и за рубежом – дело обстояло иначе. Хотя волновая механика ни в каком смысле не вытекала из эффекта Комптона, между ними существовали исторические связи. На пути к матричной механике роль эффекта Комптона становится еще более ясной. Первое применение модели виртуального осциллятора в Копенгагене должно было показать, каким образом этот эффект можно объяснить без обращения к фотону Эйнштейна, которого Бор никак не хотел признавать. Затем эта же модель была применена для объяснения дисперсии и были найдены пути к матричной механике. Таким образом, эффект Комптона был одним из мостов, переброшенных через тот разрыв, который Лакатос маскирует фразой «случайное совпадение». Я много раз приводил и другие примеры, иллюстрирующие важную роль нормальной науки и кризиса, поэтому здесь умножать их не буду. Без дополнительных исследований их в любом случае будет недостаточно. Такие исследования не обязательно подтвердят мою точку зрения, однако имеющийся на сегодняшний день материал говорит не в пользу моих критиков. Они должны поискать другие контрпримеры.
|
||||
Последнее изменение этой страницы: 2021-07-19; просмотров: 87; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.25.117 (0.017 с.) |