Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Раздел I. Статистический анализ выборки

Поиск

Практическое занятие №1. Шкалы измерения переменных

Основные понятия

Ш кала – это способ измерения (оценки) переменного.

Переменное – варьирующий признак (характеристика, атрибут) того или иного материального объекта исследования (растение, орган растения, группа растений, кислотность почвы, температура воздуха и т.п.).

Общие свойства переменных – 1) наличие или отсутствие правила ранжирования состояний переменного; 2) наличие или отсутствие заданного интервала между состояниями переменного; 3) наличие или отсутствие условного ноля как одного из состояний переменного; 4) наличие или отсутствие абсолютного ноля (минимального нижнего предела), то есть минимального значения состояний переменного; 5) наличие или отсутствие верхнего предела, то есть, максимального значения состояний переменного.

Типы шкал: 1) номинальная, 2) порядковая, 3) числовая.

Номинальная шкала

Синонимы термина «номинальная шкала»: качественная, категориальная, шкала наименований, классификационная шкала.

Качественное переменное – переменное, состояния которого немногочисленны и их невозможно измерить (представить в виде числа).

Модальность – состояние номинального переменного.

Исходные данные для анализа – частоты встречаемости тех или иных модальностей в выборке.

Используемые математические связи – тождество (А≡В), различие (А≠В).

Свойства номинальной шкалы: 1) правило ранжирования модальностей отсутствует; 2) интервал между модальностями не задан; 3) условный ноль как одно из возможных состояний переменного отсутствует; 4) абсолютный ноль как минимальный предел, к которому стремятся модальности, отсутствует; 5) максимальный предел, к которому стремятся модальности, отсутствует.

Главная отличительная особенность: отсутствие правила ранжирования модальностей.

Преимущества: абсолютная универсальность; простота и быстрота оценки; высокая робастность (устойчивость к помехам); оценка проводится без инструментов.

Недостатки: субъективность оценок; низкая статистическая мощность (увеличение доли ошибок второго рода).

Практическое задание 1.1. Приведите примеры признаков садовых растений, для которых используется номинальная шкала:

название растения признак модальности
     
     
     
     
     

Практическое задание 1.2. Форма плода у 50 сортов яблони:

Модальность Число сортов
Округлая 17
плоскоокруглая 10
Яйцевидная 7
Овальная 13
цилиндрическая 3

Постройте гистограмму частот встречаемости различных модальностей формы плода:

Решение:

 

 

Порядковая шкала

Синонимы термина «порядковая шкала – ранговая, балльная.

Балл – состояние переменного в порядковой шкале, как правило выражается натуральными числами, реже – дробями.

Исходные данные для анализа – частоты встречаемости баллов в выборке.

Ранг (R) – порядковый номер балла в ранжированном балльном ряду.

Используемые математические связи – тождество (А≡В), различие (А≠В); больше (А>В), меньше (А<В).

Свойства номинальной шкалы: 1) правило ранжирования состояний переменных имеется; 2) интервал между состояниями переменных не задан; 3) условный ноль как одно из возможных состояний переменного отсутствует; 4) абсолютный ноль как минимальный предел, к которому стремятся состояния переменных, отсутствует; 5) максимальный предел к которому стремятся

состояния переменных, отсутствует.

Главная отличительная особенность – наличие правила ранжирования состояний переменного.

Преимущества – относительная универсальность, простота и быстрота оценки, относительно высокая робастность, оценка проводится без инструментов.

Недостатки – относительная субъективность, относительно низкая статистическая мощность (увеличение доли ошибок второго рода).

Преобразование баллов в ранги: шаг 1 – ранжирование баллов в порядке возрастания или убывания по изучаемой переменной; шаг 2 – определение порядковых номеров для каждого балла в ранжированном ряду; шаг 3 – определение рангов Ri (в случае наличия нескольких объектов с одинаковыми баллами рангом будем медиана среди них); шаг 4 – проверочное действие: сумма всех рангов переменных в выборке должна быть равна сумме порядковых номеров этих переменных.

Практическое задание 1.3. Приведите примеры признаков садовых растений, для которых используется порядковая шкала:

название растения признаки
   
   
   
   
   

Практическое задание 1.4. Разработайте 3-х балльные шкалы для признаков, измеряемых в порядковой шкале:

Признак Балл Характеристика

 

   
   
   
   

 

   
   
   
   

 

   
   
   
   

Практическое задание 1.5. Проведите преобразование баллов в ранги при оценке продуктивности 15 сортов груши: 2; 4; 1; 1; 0; 3; 5; 2; 4; 2; 3; 3; 3; 5; 0

баллы ранж.                                
№ п.п.                                
Ri                                

Решение:

Практическое задание 1.6. Изучали степень поражения 20 сортов крыжовника мучнистой росой. Установлены следующие частоты встречаемости сортов с различной степенью поражения:

Балл поражения мучнистой росой Число сортов
0 3
1 3
2 6
3 6
4 2

Постройте гистограмму частот встречаемости различных модальностей формы плода:

Решение:

Числовые шкалы

Варианта (x i) –состояние переменного в числовых шкалах, выражается числом.

Используемые математические связи – тождество (А≡В), различие (А≠В); больше (А>В), меньше (А<В), сложение, вычитание, умножение, деление, возведение в степень, извлечение корня, логарифмирование и т.п.

Типы числовых шкал – интервальная, шкала отношений, абсолютная шкала.

Общие свойства числовых шкал: 1) правило ранжирования состояний переменных имеется; 2) интервал между состояниями переменных определен.

Главная отличительная особенность – наличие заданного интервала между вариантами.

Преимущества – объективность измерений, максимальная статистическая мощность.

Недостатки – для измерений в большинстве случаев необходимы инструменты, низкая скорость оценок, используются только для признаков, у которых состояния можно измерить; низкая робастность.

Интервальная шкала

Интервальная шкалой называют числовую шкалу, для которой характерно наличие условного ноля, левее которого измерения выражаются отрицательными числами, правее – положительными.

Свойства интервальной шкалы: 1) правило ранжирования состояний переменного имеется; 2) интервал между состояниями переменного задан; 3) условный ноль как одно из возможных состояний переменного, имеется; 4) абсолютный ноль как минимальный предел, к которому стремятся состояния переменных, отсутствует; 5) максимальный предел, к которому стремятся состояния переменных, отсутствует.

Главные отличительные особенности интервальной шкалы: 1) наличие условного ноля; 2) варианты представляют собой как положительные, так и отрицательные числа.

Практическое задание 1.7. Приведите примеры интервальных числовых признаков, которые используются в садоводстве:

признаки
 
 
 
 
 

Практическое задание 1.8. Динамика среднесуточной температуры воздуха в период с 25.11.2003 г. по 14.12.2003 г.:

Дата 25.11 26.11 27.11 28.11 29.11 30.11 01.12 02.12 03.12 04.12
toC 4 2 2 3 5 1 1 0 0 2
Дата 05.12 06.12 07.12 08.12 09.12 10.12 11.12 12.12 13.12 14.12
toC 1 0 -2 -2 0 -4 -6 -6 -5 -3

Постройте график динамики среднесуточной температуры воздуха:

Решение:

 

 

Шкала отношений

Шкалой отношений называют такую числовую шкалу, для которой характерно наличие абсолютного ноля, представляющего минимальный предел, к которому стремятся состояния переменных и отсутствие верхнего (максимального) предела варьирования.

Свойства интервальной шкалы: 1) правило ранжирования состояний переменного имеется; 2) интервал между состояниями переменного задан; 3) условный ноль как одно из возможных состояний переменного отсутствует; 4) абсолютный ноль как минимальный предел (абсолютный минимум), к которому стремятся состояния переменн2ых, имеется; 5) максимальный предел (абсолютный максимум), к которому стремятся состояния переменных, отсутствует.

Главные отличительные особенности шкалы отношений: 1) наличие абсолютного ноля; 2) отсутствие абсолютного максимума.

Практическое задание 1.9. Приведите примеры признаков, измеряемых в шкале отношений, у различных садовых растений:

название растения признаки
   
   
   
   
   

Практическое задание 1. 10. Длина листовой пластинки у 57 сортов спиреи японской, см:

4,2

4,8

3,9

4,6

4,3

4,8

4,2

4,0

4,7

4,8

3,8

4,6

4,1

4,3

4,2

4,8

4,1

3,9

4,5

4,8

5,1

4,6

4,8

4,9

4,7

4,9

4,6

5,0

4,7

4,3

4,9

4,5

4,6

4,4

5,1

5,0

4,9

4,7

4,9

5,3

5,2

4,9

4,7

4,8

5,2

4,7

5,1

4,9

4,6

4,9

5,3

5,1

5,0

5,4

4,7

4,6

4,9

Постройте гистограмму частот встречаемости различных сортов спиреи японской по длине листовой пластинки:

Решение:

Абсолютная шкала

Абсолютной шкалой называют такую числовую шкалу, для которой характерно наличие и абсолютного ноля (минимального предела) и максимального предела варьирования.

Свойства абсолютной шкалы – 1) правило ранжирования состояний переменного имеется; 2) интервал между состояниями переменного задан; 3) условный ноль как одно из возможных состояний переменного отсутствует; 4) абсолютный ноль как минимальный предел, к которому стремятся состояния переменных, имеется; 5) максимальный предел, к которому стремятся состояния переменных, имеется.

Главные отличительные особенности абсолютной шкалы: 1) наличие минимального и максимального пределов; 2) отсутствие размерности переменных.

Практическое задание 1.11. Приведите примеры признаков, измеряемых в абсолютной шкале, у различных садовых растений:

название растения признаки
   
   
   
   
   

Практическое задание 1. 12. Доля укоренившихся зеленых черенков у 30 сортов чайно-гибридной розы:

№ сорта 1 2 3 4 5 6 7 8 9 10
% укореняемости 23 57 35 66 32 48 70 55 42 29
№ сорта 11 12 13 14 15 16 17 18 19 20
% укореняемости 36 40 24 43 55 78 46 51 73 52
№ сорта 21 22 23 24 25 26 27 28 29 30
% укореняемости 19 22 63 57 20 32 30 45 56 33

Постройте гистограмму частот распределения 30 сортов по укореняемости зеленых черенков:

Решение:

 

 

Работа сдана «____» ______________ 20__ г.

__________________________________

(подпись студента, электронная




Поделиться:


Последнее изменение этой страницы: 2021-05-12; просмотров: 332; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.1.100 (0.007 с.)