Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физиология базальных ганглиевСодержание книги
Поиск на нашем сайте
а) морфофункц. хар-ка стриопаллидарной сис-мы мозга Базальные ядра г.м. располагаются под белым веществом внутри переднего мозга, преимущественно в лобных долях. К базальным ядрам относят хвостатое ядро, скорлупу, ограду, бледный шар. Стриопаллидарная сис-ма мозга состоит из полосатого тела (хвостатое ядро и скорлупа) и бледного шара.
б) афферентные и эфферентные связи бледного шара и полосатого тела Осн. афферентный вход - хвостатое ядро, осн. эфферентный выход - бледный шар. Хвостатое ядро и скорлупа получают нисходящие связи от экстрапирамидной коры и др. полей коры большого мозга. Аксоны хвостатого ядра и скорлупы идут к бледному шару, отсюда — к таламусу от него — к сенсорным полям. образуется замкнутый круг связей. Хвостатое ядро и скорлупа имеют связи с черной субстанцией, красным ядром, ядрами преддверия, мозжечком, гамма -клетками с.м. Медиальные ядра таламуса имеют прямые связи с хвостатым ядром.
в) функциональные взаимоотношения между полосатым телом и бледным шаром, между полосатым телом и черной субстанцией Полосатое тело и оказывает на бледный шар тормозящее влияние: Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность. Взаимодействие черного вещества и хвостатого ядра основано на прямых и обратных связях между ними. Стимуляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению, а разрушение — к уменьшению количества дофамина в хвостатом ядре. Благодаря дофамину проявляется растормаживающий механизм взаимодействия хвостатого ядра и бледного шара. При недостатке дофамина в хвостатом ядре бледный шар растормаживается, активизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц.
г) хар-ка симптомов стриопалидарной недостаточности Базальные ядра совместно с корой больших полушарий контролируют — амплитуду движений и скорость изменений движения. Нарушения движений, связанные с заболеваниями базальных ядер, подразделяют на гиперкинетические и гипокинетические.
- выключение хвостатого ядра сопровождается развитием непроизвольных мимических реакций, тремора, двигательной гиперактивности в форме бесцельного перемещения с места на место. - при повреждении хвостатого ядра наблюдаются расстройства ВНД, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. - повреждение бледного шара вызывает гипомимию, маскообразность лица, тремор головы, конечностей, монотонность речи. Болезнь Паркинсона имеет гипокинетические и гиперкинетические признаки. Она возникает в результате дегенерации дофаминергических нейронов чёрного вещества.
Физиология крови а)состав, физико-химические свойства и функции белков плазмы крови: белки(65-85г/л): альбумины (38-50г/л); глобулины(20-30г/л); фибриноген (2-4г/л). Функции: - обеспечивают онкотическое давление крови, от которого зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью; - регулируют рН крови благодаря наличию буферных свойств; - влияют на вязкость крови и плазмы, - обеспечивают гуморальный иммунитет, - принимают участие в свертывании крови; - способствуют сохранению жидкого состояния крови, так как являются естественными антикоагулянтами; - служат переносчиками гормонов, липидов, минеральных веществ и др.; - обеспечивают процессы роста и развития различных клеток.
б) роль буферных систем крови в регуляции КОС: - Самой мощной является буферная система гемоглобина.(75%) Эта система включает восстановленный гемоглобин (ННb) и калиевую соль восстановленного гемоглобина (КНb). КНb как соль слабой кислоты отдает ион К+ и присоединяет при этом ион Н+, образуя слабодиссоциированную кислоту: H+ + KHb = K+ + HHb - Карбонатная буферная система (H2CO3/NaHCO3) NaHCO3 диссоциирует на ионы Na+ и НСОз-. Если в кровь поступает кислота более сильная, чем угольная. Образуется слабодиссоциированная и легко растворимая угольная кислота, что предотвращает повышение концентрации ионов Н+ в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду на Н2О и СО2. Если в кровь поступает основание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaНСОз) и воду, что препятствует сдвигу рН в щелочную сторону.
- Фосфатная буферная система образована натрия дигидрофосфатом (NaH2PO4) и натрия гидрофосфатом (Na2HPO4). Первое соединение ведет себя как слабая кислота, второе - как соль слабой кислоты. - Белки плазмы крови играют роль буфера, так как обладают амфотерными свойствами: в кислой среде ведут себя как основания, а в основной - как кислоты.
в) хар-ка кровозаменяющих, плазмозаменяющих и физиологических растворов: Растворы, имеющие одинаковое с кровью осмотическое давление - изотонические, или физиологические (0,9% раствор натрия хлорида и 5% раствор глюкозы). Растворы, имеющие большее осмотическое давление, чем кровь, называются гипертоническими, а меньшее — гипотоническими. Эти растворы из-за отсутствия белков неспособны на длительное время задерживать воду в крови - вода быстро выводится почками и переходит в ткани. Поэтому в клинической практике эти растворы применяются в качестве кровезамещающих лишь в случаях, когда отсутствуют коллоидные растворы, способные на длительное время восполнить недостаток жидкости в сосудистом русле.
г) физиологические основы гемотрансфузии: гемотрансфузия-лечебный метод. заключающийся во введении в кровеносное русло больного человека (реципиента) цельной крови или её компонентов, заготовленных от донора или самого реципиента. в настоящее время переливание крови следует расценивать как операцию по трансплантации ткани со всеи вытекающими из этого последствиями-возможность отторжения клеточных, плазменных компонентов крови, развитие аллосенсибилизации к антигенам крови и белкам плазмы. Цели гемотрансфузии: заместительная, иммуностимулирующая, гипосенсибилизирующая, дезинтоксикационная, диуретическая, питательная, обменная, гемостатическая.
Билет 20
|
||||||
Последнее изменение этой страницы: 2021-05-12; просмотров: 80; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.151.70 (0.007 с.) |