Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные термодинамические параметры

Поиск

Состояние некоторой массы газа m определяется тремя термодинамическими параметрами: P, V, T. Здесь P -давление, V объем, Т температура.

Закон, выражающий зависимость между этими параметрами, называется уравнением состояния      газа: f (P, V, T) = 0.

2 Дополнительные термодинамические параметры:

 – плотность вещества;

 – молярная масса (масса одного моля);

 – число молей;

 – концентрация молекул, где N число всех молекул в объеме V;

, где  – число Авогадро (число молекул в 1 моле);

 – масса одной молекулы любого вещества.

Термодинамические процессы

Изотермический процесс. Закон Бойля-Мариотта:

При T = const; m = const; PV = const.

Для 2-х состояний P 1 V 1 = P 2 V 2.

Изобарический процесс. Закон Гей-Люссака:

При P = const; m = const; V = V0 (1 + t); .

Для 2-х состояний .

Изохорический процесс. Закон Шарля:

    При V = const; m = const;    P = P0 (1 + t).

Для 2-х состояний .

Уравнение состояния идеального газа

Для данной массы газа (закон Клапейрона)

.

Для 2-х состояний

.

Для любой массы газа (уравнение Клапейрона - Менделеева)

 , или ,

где N – число молекул; R = 8,31 Дж/(моль∙К) - универсальная газовая постоянная; k = 1,38´10–23 Дж/К – постоянная Больцмана; R = kN а,откуда следует

,

где n 0 – концентрация молекул.

Закон Авогадро

Моли любых газов при одинаковой температуре и давлении занимают одинаковые объемы. При нормальных условиях (P 0= 1,01×105 Па, T =273,15К); = 22,41×10–3 м3/моль.

6 Давление смеси газов (закон Дальтона):

,

где Pi – парциальное давление  i-го  газа,   n – число газов в смеси.

Масса 1 моля смеси газов:

,

где mi – масса i -го газа, входящего в смесь;  – число молей i -го газа, находящегося в смеси.

7 Основное уравнение кинетической теории газов:

, или ,

где – среднеквадратичная скорость молекул;  – средняя кинетическая энергия поступательного движения одной молекулы.

 

ЭЛЕМЕНТЫ СТАТИСТИЧЕСКОЙ ТЕОРИИ ИДЕАЛЬНЫХ ГАЗОВ

1 Распределение молекул по скоростям (закон Максвелла):

а) Число молекул, имеющих скорости в интервале от v до :

,

где N – число всех молекул; m – масса молекулы; f (v) – функция распределения молекул по скоростям; e – основание натуральных логарифмов; k – постоянная Больцмана;  – вероятность того, что  число молекул будут иметь скорости в интервале от v до .

б) Число молекул, относительные скорости которых заключены в интервале от u до :

,

где  – относительная скорость; v – скорость молекул; v нв – наиболее вероятная скорость.

Скорости молекул

Наиболее вероятная         .

Средняя арифметическая .

Среднеквадратичная       .

3  Средняя кинетическая энергия молекулы:

а) для одноатомной молекулы ;

б) число степеней свободы i молекулы:

одноатомной i = 3 (3 поступат.);

двухатомной i = 5 (3 поступат. + 2 вращ.);

многоатомной i = 6 (3 поступат. + 3 вращ.);

в) средняя энергия, приходящаяся на одну степень свободы:

;

г) средняя энергия любой молекулы:

.



Поделиться:


Последнее изменение этой страницы: 2021-04-14; просмотров: 131; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.72.27 (0.006 с.)