Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные специфические черты научного познанияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Выделим специфические черты научного знания. 1. Систематичность. Еще Кант в качестве неотъемлемой черты науки отмечал систематичность научного знания: именно этим, как он неоднократно подчеркивает в свой «Логике», наука отличается от обыденного знания, представляющего собой «простой агрегат». И об этом же он писал ранее в своем главном труде – «Критике чистого разума»: «…Обыденное знание именно лишь благодаря систематическому единству становится наукой, т. е. из простого агрегата знаний превращается в систему…» Следует иметь в виду, что наука не является раз и навсегда застывшей системой. Она изменяется, развивается: не все области науки и отдельные дисциплины, составляющие ту или иную область, возникают одновременно, а возникнув, они, будучи взаимосвязанными, тем не менее развиваются не «синхронно», не идут «нога в ногу» и, так сказать, в одном и том же темпе. И нет в этой системе «абсолютной завершенности» и взаимосвязи каждого научного знания буквально со всеми другими знаниями. 2. Воспроизводимость. Всякий научный результат, будучи таковым, предполагает возможность его многократного воспроизведения – и самим его автором, и другими членами научного сообщества – при наличии тех необходимых условий, в которых он был получен. При этом еще действует принцип ceteris paribus – «при прочих равных условиях», т. е. предполагается, что те факторы, которые не входят в явном виде в формулировку результата, остаются неизменными. Скажем, в законе Ома устанавливается прямая пропорциональность между значениями напряжения и силы тока в проводнике (коэффициентом пропорциональности является величина, обратная сопротивлению проводника). Однако при этом предполагается, что речь идет об «обычных» условиях, т. е. влажность в помещении остается в «обычных» границах, температура – постоянной и тоже «обычной», разного рода незначительными электромагнитными привходящими воздействиями можно пренебречь, поскольку они тоже остаются «обычными», и т. д. Но в ушедшем веке было открыто и подробно изучено явление сверхпроводимости. Оказывается, что при очень низких температурах прямая пропорциональность между значениями напряжения и силы тока в проводнике нарушается – сила тока увеличивается. 3. Выводимость. Научное знание предполагает возможность получения нового знания в виде следствий из содержания данного результата, имеющихся теоретических положений и фактов, а также нередко и из дополнительно принимаемых допущений, посредством логических выводов, математических расчетов, методов формализации и т. д. Обратим внимание на то, что «выведение следствия» в данном случае понимается не просто как чисто логический вывод, скажем, в форме силлогистического умозаключения, а в общем смысле: так, например, решив систему уравнений, составленных на основе содержания данного научного результата, мы после интерпретации полученных решений («корней уравнений») получаем новое знание. Разумеется, в построении соответствующего метода решения уравнений данного типа все законы логики соблюдаются. 4. Доступность для обобщений и предсказаний. Система научного знания организована так, чтобы было возможно расширение этого знания за пределы той области, в которой оно было получено. Отметим при этом, что «предсказание» понимается не только во временном смысле, а предельно широко, т. е. как выход за границы той области знания, в которой данное знание было получено. Под обобщением же понимается распространение данного результата на все явления соответствующей предметной области. 5. Проблемность. Система научного знания характеризуется тем, что решение какой‑то одной проблемы наряду с полученным результатом (положительным или отрицательным ответом на соответствующий вопрос) означает также появление возможности сформулировать новые проблемы; это нередко не менее ценно, чем сам результат. Так что с решением всякой научной проблемы общее число нерешенных проблем, стоящих перед данной наукой, не уменьшается, а возрастает. 6. Проверяемость. Научные знания представляют собой системы таких утверждений, которые удовлетворяют требованию принципиальной проверяемости. Речь идет, во‑первых, о том, что в предполагаемой проверке мы касаемся самого существа того явления, к которому относится проверяемое утверждение. Во‑вторых, утверждение признается принципиально проверяемым, если вполне выяснено, как соответствующий опыт (наблюдение, эксперимент, моделирование и др.) можно было бы осуществить. Имея в виду это значение понятия «принципиальный», мы можем в конкретном случае даже и не ставить этот опыт, сберегая тем самым ресурсы (материальные, энергетические, информационные). Например, принципиально проверяемым является сегодня утверждение о том, что возможен пилотируемый полет на Марс; но такой полет требует больших затрат, и потому пока он не состоялся. Есть еще третье значение понятия «принципиально проверяемое утверждение»: утверждение должно быть доступным для того, чтобы можно было попытаться его опровергнуть. В самом деле, подтверждение посредством опыта какого‑то утверждения обладает хоть какой‑нибудь значимостью, только если опыт мог бы его и опровергнуть. А утверждение, которое может быть согласовано с любым исходом опыта и которое вследствие этого, очевидно, нельзя проверить, не является научным. 7. Критичность. Всякое научное утверждение время от времени – по мере появления новых фактов и построения новых теорий – пересматривается. При этом «пересмотр» вовсе не означает полного «забвения» данного результата. Фактически, дело сводится к уточнению области его применимости. Так, с появлением теории относительности Эйнштейна физическая теория Ньютона не перестала использоваться для объяснения тех случаев движения, когда скорость тел на много порядков меньше скорости света. 8. Ориентация на практику. Научное знание в той или иной форме ориентировано на практические потребности общества и тесно связано с практикой. Именно практика является основой научного познания и обеспечивает его разнообразными средствами познания. Практика – движущая сила научного познания, влияет на приоритеты научных исследований и определяет их «портфель заказов». Нетрудно видеть, что приведенный перечень мог бы быть и длиннее. Например, в нем нет такой черты, как истинность. Но эту черту, очевидно, и нет оснований включать: обязательным является стремление ученого к истине, а при этом многие вполне научные утверждения, «отслужившие свою службу», – как, например, утверждения аристотелевской физической теории или утверждения химической теории, основанной на концепции «теплорода», – давно уже квалифицированы как ложные. Что касается стремления к истине, «нацеленности» научного знания на истинность, то эта черта, как и еще одна черта, объективность, фактически отражена в нашем перечне, хотя и косвенно. Иначе о чем же говорят воспроизводимость, критичность, проверяемость и др.? Фактически, отражены в перечне также развиваемость, незавершенность, перестраиваемость, или – если воспользоваться терминологией современной неклассической логики – немонотонность научного знания.
Эволюция науки как проблема
Важнейшей специфической чертой научного познания является также его динамика, т.е. его рост, изменение, развитие и т.п. Эта идея, не такая уж новая, была высказана уже в античной философии, а Гегель сформулировал ее в положении о том, что "истина есть процесс", а не "готовый результат". Активно исследовалась эта проблема основоположниками и представителями диалектико-материалистической философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы "триумфального шествия" логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его роста, изменения. Дело в том, что для логического позитивизма в целом были характерны: а) абсолютизация формально-логической и языковой проблематики; б) гипертрофия искусственно сконструированных формализованных языков (в ущерб естественным); в) концентрация исследовательских усилий на структуре "готового", ставшего знания без учета его генезиса и эволюции; г) сведение философии к частнонаучному знанию, а последнего - к формальному анализу языка науки; д) игнорирование социокультурного контекста анализа знания и т.д. Развитие знания - сложный диалектический процесс, имеющий определенные качественно различные этапы. Так, этот процесс можно рассматривать как движение от мифа к логосу, от логоса к "преднауке", от "преднауки" к науке, от классической науки к неклассической и далее к постнеклассической и т.п., от незнания к знанию, от неглубокого, неполного к более глубокому и совершенному знанию и т.д. В современной западной философии проблема роста, развития знания является центральной в философии науки, представленной особенно ярко в таких течениях, как эволюционная (генетическая) эпистемология и постпозитивизм. Эволюционная эпистемология - направление в западной философско-гносеологической мысли, основная задача которого - выявление генезиса и этапов развития познания, его форм и механизмов в эволюционном ключе и, в частности, построение на этой основе теории эволюции науки. Эволюционная эпистемология стремится создать обобщенную теорию развития науки, положив в основу принцип историзма и пытаясь опосредовать крайности рационализма и иррационализма, эмпиризма и рационализма, когнитивного и социального, естествознания и социально-гуманитарных наук и т.д. Один из известных и продуктивных вариантов рассматриваемой формы эпистемологии - генетическая эпистемология швейцарского психолога и философа Ж. Пиаже. В ее основе - принцип возрастания и инвариантности знания под влиянием изменений условий опыта. Пиаже, в частности, считал, что эпистемология - это теория достоверного познания, которое всегда есть процесс, а не состояние. Важная ее задача - определить, каким образом познание достигает реальности, т.е. какие связи, отношения устанавливаются между объектом и субъектом, который в своей познавательной деятельности не может не руководствоваться определенными методологическими нормами и регулятивами. Генетическая эпистемология Ж. Пиаже пытается объяснить генезис знания вообще, и научного в частности, на основе воздействия внешних факторов развития общества, т.е. социогенеза, а также истории самого знания и особенно психологических механизмов его возникновения. Изучая детскую психологию, ученый пришел к выводу, что она составляет своего рода ментальную эмбриологию, а психогенез является частью эмбриогенеза, который не заканчивается при рождении ребенка, так как ребенок непрерывно испытывает влияние среды, благодаря чему происходит адаптация его мышления к реальности. Фундаментальная гипотеза генетической эпистемологии, указывает Пиаже, состоит в том, что существует параллелизм между логической и рациональной организацией знания и соответствующим формирующим психологическим процессом. Соответственно этому он стремится объяснить возникновение знания на основе происхождения представлений и операций, которые в значительной мере, если не целиком, опираются на здравый смысл. Особенно активно проблему роста (развития, изменения) знания разрабатывали, начиная с 60-х гг. XX столетия сторонники постпозитивизма - К. Поппер, Т. Кун, И. Лакатос, П. Фейерабенд, Ст. Тулмин и др. Обратившись лицом к истории, развитию науки, а не только к формальному анализу ее "застывшей" структуры, представители постпозитивизма стали строить различные модели этого развития, рассматривая их как частные случаи общих эволюционных изменений, совершающихся в мире. Они считали, что существует тесная аналогия между ростом знания и биологическим ростом, т.е. эволюцией растений и животных. В постпозитивизме происходит существенное изменение проблематики философских исследований: если логический позитивизм основное внимание обращал на анализ структуры научного познания, то постпозитивизм главной своей проблемой делает понимание роста, развития знания. В связи с этим представители поспозитивизма вынуждены были обратиться к изучению истории возникновения, развития и смены научных идей и теорий. После постпозитивизма р азвитие эволюционной эпистемологии пошло по двум основным направлениям. Во-первых, по линии так называемой альтернативной модели эволюции (К. Уоддингтон, К. Халквег, К. Хугер и др.) и, во-вторых, по линии синергетического подхода. К. Уоддингтон и его сторонники считали, что их взгляд на эволюцию дает возможность понять, как такие высокоструктурированные системы, как живые организмы, или концептуальные системы, могут посредством управляющих воздействий самоорганизовываться и создавать устойчивый динамический порядок. В свете этого становится более убедительной аналогия между биологической и эпистемологической эволюцией, чем модели развития научного знания, опирающиеся на традиционную теорию эволюции. Синергетический подход сегодня становится все более перспективным и распространенным, во-первых, потому, что идея самоорганизации лежит в основе прогрессивной эволюции, которая характеризуется возникновением все более сложных и иерархически организованных систем; во-вторых, она позволяет лучше учитывать воздействие социальной среды на развитие научного познания; в-третьих, такой подход свободен от малообоснованного метода "проб и ошибок" в качестве средства решения научных проблем. В истории науки существует два крайних подхода к анализу динамики, развития научного знания и механизмов этого развития. Кумулятивизм (от лат. cumula - увеличение, скопление) считает, что развитие знания происходит путем постепенного добавления новых положений к накопленной сумме знаний. Такое понимание абсолютизирует количественный момент роста, изменения знания, непрерывность этого процесса и исключает возможность качественных изменений, момент прерывности в развитии науки, научные революции. Сторонники кумулятивизма представляют развитие научного знания как простое постепенное умножение числа накопленных фактов и увеличение степени общности устанавливаемых на этой основе законов. Так, Г. Спенсер мыслил механизм развития знания по аналогии с биологическим механизмом наследования благоприобретенных признаков: истины, накопленные опытом ученых предшествующих поколений, становятся достоянием учебников, превращаются в априорные положения, подлежащие заучиванию. Антикумулятивизм полагает, что в ходе развития познания не существует каких-либо устойчивых (непрерывных) и сохраняющихся компонентов. Переход от одного этапа эволюции науки к другому связан лишь с пересмотром фундаментальных идей и методов. История науки изображается представителями антику-мулятивизма в виде непрекращающейся борьбы и смены теорий и методов, между которыми нет ни логической, ни даже содержательной преемственности. Объективно процесс развития науки далек от этих крайностей и представляет собой диалектическое взаимодействие количественных и качественных (скачки) изменений научного знания, единство прерывности и непрерывности в его развитии.
Классификация наук
Классификация (от лат. сlassis – разряд, класс и facio – делаю) – это система соподчиненных понятий (классов, объектов) в какой-либо области знания или деятельности. Научная классификация фиксирует закономерные связи между классами объектов с целью определения места объекта в системе, которое указывает на его свойства (таковы, например, биологические систематики, классификация химических элементов, классификация наук). Строго и четко проведенная классификация как бы подытоживает результаты формирования определенной отрасли знания и одновременно отмечает начало нового этапа в ее развитии. Классификация содействует движению науки со ступени эмпирического накопления знаний на уровень теоретического синтеза. Кроме того, она позволяет делать обоснованные прогнозы относительно неизвестных еще фактов или закономерностей. По степени существенности оснований деления различаются естественные и искусственные классификации. Если в качестве основания берутся существенные признаки, из которых вытекает максимум производных, так что классификация может служить источником знания о классифицируемых объектах, то такая классификация называется естественной (например, Периодическая таблица химических элементов). Если же для систематизации используются несущественные признаки, классификация считается искусственной (например, алфавитно-предметные указатели, именные каталоги в библиотеках). Классификация дополняется типологией, под которой понимается научный метод, основанный на расчленении систем объектов и их группировке с помощью обобщенной модели или типа. Она используется в целях сравнительного изучения существенных признаков, связей, функций, отношений, уровней организации объектов. Классификация наук предполагает группировку и систематизацию знания на основе сходства определенных признаков. Так, например, Френсис Бэкон в основание своей классификации положил особенности человеческой души, такие, как память, воображение и разум. Историю он относил к разряду памяти, поэзию – к воображению, философию – к разуму. Рене Декарт для классификации использовал метафору дерева. «Корневище» этого дерева образует метафизика (первопричина!), «ствол» – символизирует физику, а «крона» включает медицину, механику и этику. Свою классификацию создал автор книги «История Российская с древнейших времен до наших дней» В. Н. Татищев (1686–1750), который при Петре I курировал вопросы образования. В науках Татищев выделял этнографию, историю и географию. Главным в классификации наук он считал самопознание и принцип полезности, соответственно которому науки могут быть «нужные», «щегольские», «любопытные» и «вредные». К «нужным» наукам Татищев относил логику, физику, химию. Искусство он относил к разряду «щегольских» наук; астрономию, хиромантию, физиогномику – к «любопытным» наукам; гадание и колдовство – к «вредным». Французский философ, один из основоположников позитивизма и социологии Огюст Конт (1798–1857) в основу классификации наук положил закон о трех стадиях интеллектуальной эволюции человечества. Свою классификацию он выстроил по степени уменьшения абстрактности и увеличения сложности наук: математика, астрономия, физика, химия, биология, социология (социальная физика). В качестве классифицирующего признака он определил действительные естественные связи, существующие между предметами. Согласно Конту, есть науки, относящиеся, с одной стороны, к внешнему миру, а с другой стороны, – к человеку. Так, философию природы следует разделить на две отрасли – неорганическую и органическую; естественная философия охватывает три отрасли знания – астрономию, химию, биологию. Конт считал возможным продолжить структурирование, распространив свой принцип систематизации наук на математику, астрономию, физику, химию, социологию. Выделение последней в особую группу он обосновывал ее развитием на собственной методологической основе, которую нельзя распространить на другие науки. Немецкий историк культуры и философ Вильгельм Дильтей (1833–1911) в книге «Введение в науки о духе» предложил отделить науки о духе от наук о природе, внешних по отношению к человеку. Предметом наук о духе он считал анализ человеческих отношений, внутренние переживания, окрашенные эмоциями, о которых природа «молчит». Согласно Дильтею, такая ориентация может установить связь понятий «жизнь», «экспрессия», «понимание», которых в науке нет, хотя они объективируются в институтах государства, церкви, юриспруденции. По мнению другого немецкого философа, Генриха Риккерта (1863–1936), противопоставление наук о природе и наук о культуре отражает противоположность интересов, разделяющих ученых на два лагеря. В его классификации естествознание направлено на выявление общих законов, история занимается неповторимыми единичными явлениями, естествознание свободно от ценностей, тогда как культура царствует в них. Фридрих Энгельс (1820–1895) главным критерием классификации наук считал формы движения материи в природе. Любопытен опыт классификации наук академика В. И. Вернадского (1863–1945). В центре его естественно-научных и философских интересов находилась разработка целостного учения о биосфере – живом веществе, организующем земную оболочку, – и эволюции биосферы в ноосферу. Поэтому в основу своей классификации он положил характер наук. В зависимости от характера изучаемых объектов он выделял два типа наук: 1) науки, охватывающие всю реальность, – планету, биосферу, космос; 2) науки, относящиеся к земному шару. В этой системе знаний особое место он уделил логике: она охватывает все области наук – и гуманитарные, и естественно-математические. Советский философ, химик, историк науки, академик Б. М. Кедров (1903–1985), предложил четырехзвенную классификацию, включающую в себя: а) философские науки (диалектика, логика); б) математические науки (математика, логика, кибернетика); в) естественные и технические науки (механика, астрономия, физика, химия, геология, география, биохимия, биология, физиология, антропология); г) социальные науки (история, археология, этнография, экономическая география, статистика и т.д.). По поводу классификации наук дискуссия продолжается и сегодня, при этом господствующим является принцип дальнейшего дробления их по основаниям, прикладной роли и т.п. Принято считать, что наиболее плодотворным методом классификации является тот, который основан на различиях шести основных форм материи: субатомно-физической, химической, молекулярно-физической, геологической, биологической и социальной. Классификации наук имеет большое значение для организации научно-исследовательской, учебно-педагогической и библиотечной деятельности.
|
||||
Последнее изменение этой страницы: 2021-04-12; просмотров: 955; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.202.48 (0.013 с.) |