Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 2.3 Динамическое программированиеСодержание книги
Поиск на нашем сайте
Динамическое программирование – раздел оптимального программирования (оптимального управления), в котором процесс принятия решения и управления, может быть разбит на отдельные этапы (шаги). Все шаги могут быть уникальными или одинаковыми и чередоваться друг с другом. Некоторые задачи оптимизации легко разделяются на шаги естественным способом, а для других вводится искусственное разделение на шаги. Динамическое программирование позволяет свести одну сложную задачу со многими переменными ко многим задачам с малым числом переменных. Это значительно сокращает объем вычислений и ускоряет процесс принятия управленческого решения. Экономический процесс является управляемым, если можно влиять на ход его развития. Управление – совокупность решений, принимаемых на каждом этапе для влияния на ход развития процесса. Операция– управляемый процесс, т.е. мы можем выбирать какие-то параметры, влияющие на ход процесса и управлять шагами операции, обеспечивать выигрыши на каждом шаге и в целом за операцию. Решение на каждом шаге называется «шаговым управлением». Совокупность всех шаговых управлений представляет собой управление операцией в целом. Примерами задач, решаемых методом динамического программирования, могут быть: распределение ресурсов (финансовых, сырьевых, материальных и т.д.) между предприятиями, замена или ремонт промышленного оборудования, прокладка коммуникаций (трубопроводов, дорог и т.д.) и пр. В этих задачах, как правило, в качестве шагов выступают отрезки времени, которые явно задаются в условии задачи.
Требуется найти такое управление (х), при котором выигрыш обращался бы в максимум: где F – выигрыш за операцию; Fi(xi) – выигрыш на i-м шаге; х – управление операцией в целом; хi – управление на i-м шаге (i=1,2,…,m). В общем случае шаговые управления (х1, х2, … х m) могут стать числами, векторами, функциями. То управление (х *), при котором достигается максимум, называется оптимальным управлением. Оптимальность управления состоит из совокупности оптимальных шаговых управлений х* = х*1, х*2, … х*m F* = max {F*(х*)} – максимальный выигрыш, который достигается при оптимальном управлении х*. Исходя из условий, каждой конкретной задачи длину шага выбирают таким образом, чтобы на каждом шаге получить простую задачу оптимизации и обеспечить требуемую точность вычислений. Нахождение кратчайшего пути Выбор оптимального решения на конкретном шаге не дает гарантии получения оптимального решения всей задачи. Поэтому для получения оптимального решения в задаче иногда приходится выбирать не лучшее решение на конкретном шаге. Планирование многошаговой задачи сводится к выбору такого решения на каждом шаге, которое учитывает последствие на следующих шагах. На текущем шаге выбирается не лучшее решение, а то, которое предполагает максимальную сумму выигрыша от всех оставшихся шагов. Поэтому выполнять вычисления в задачах ДП удобнее от конца к началу. Выполняя вычисление по последнему шагу, делается ряд предположений, как закончился предыдущий шаг и для каждого предположения найти условно оптимальное решение до первого шага. Т.о. будут найдены условно-оптимальные решения на каждом шаге. Далее выполняется переход от условно-оптимального к безусловно-оптимальному решению. Вычисления идут от первого шага к последнему, используя полученные условно-оптимальные решения. Распределение ресурсов Общий подход к решению задач распределения ресурсов тот же, но имеют некоторые особенности. Распределить некоторый ресурс, например, финансы в объеме S между предприятиями P1, P2, Pn. Вложение в каждое предприятие должно приносить дополнительную прибыль. Чем больше сумма финансовых вложений в предприятие, тем больше дополнительный доход. Но может быть так, что начиная с какого-то момента, дополнительная прибыль не увеличивается, т. е. предприятие не может освоить выделенные ресурсы. Задача распределения ресурсов стоит так: как распределить выделенные ресурсы между предприятиями, чтобы суммарный доход от всех предприятий был максимальным. Распределяемые ресурсы выделяются порциями, распределенные во времени. Перед каждым шагом имеется некоторая сумма S еще не распределенных ресурсов. На каждом шаге предприятиям назначаются ресурсы x1, x2, xn. Требуется найти оптимальное сочетание x1, x2, xn, при котором совокупный доход максимален. Оптимизацию начинаем с последнего шага m. На этом шаге остаток ресурсов S. Их нужно назначить последнему предприятию Pn. Оптимальное решение будет выглядит xn(S)=S. Условно-оптимальный доход составит Lm(S)=αm(S). На предпоследнем шаге n-1 запас ресурсов S, а условно-оптимальный доход на двух последних шагах, Ln-1(S) Если на предпоследнем шаге будут выделены ресурсы x, то на последнем шаге ресурсов останется S-x и условно—оптимальный жоход на двух последних шагах составит Ln-1(S)=αn-1(S)+Ln(S-x) и нужно найти такой x, чтобы доход был максимальным. Дойдя до первого шага будем иметь начальное значение ресурсов Q, поэтому условно-оптимальный доход составит: L=max{α1(x)+L2(Q-x)}. Далее выполнить обратное вычисление и уточнить распределение ресурсов.
|
||||
Последнее изменение этой страницы: 2021-02-07; просмотров: 107; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.236.144 (0.006 с.) |