Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Двигатели Стирлинга, работающие по другим циклам

Поиск

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.
В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

Альфа-Стирлинг Бета-стирлинг с ромбическим механизмом и регенератором Гамма-Стирлинг без регенератора
  • Альфа-Стирлинг — содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень — горячий, другой — холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг — цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг — тоже есть поршень и «вытеснитель», но при этом два цилиндра — один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга — решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный)[1][2].

Недостатки

  • Материалоёмкость — основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела — водород, гелий.
  • Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя — как все двигатели внешнего сгорания (вернее — внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции — конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс — простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность — в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.[3]
  • Бесшумность двигателя — стирлинг не имеет выхлопа, а значит — не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность — сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬ
Термоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

 

Рисунок 1. Поющее пламя Хиггинса

 

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

 

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

 

 

Рисунок 3. Трубка Сондхаусса.


Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.
Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания.» Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect) — эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре — закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы[1] и микрокондиционеры.[2]

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла".
Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.
Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации — в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы — его горячая часть. Однако на самом деле не всё так просто — добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение — например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) — область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил — стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее — возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 5565; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.132.178 (0.018 с.)