Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла.



Определение. Функция F(x) называется первообразной для функции f(x) на интервале Х, если в каждой точке этого интервала выполняется условие

F ` (x)=f(x).

Например, для функции f(x) = 2х первообразной является F(х) = х2 для любых х Є (-∞, ∞).

Действительно, F`(x) = 2x = f(x).

F1(x) = x2 + 2 так же является первообразной для f(x) = 2x, F2(x) = x2 – 100 первообразная той же функции f(x) = 2x.

Теорема. Если F1(x) и F2(x) первообразные для функции f(x) на некотором интервале Х, то найдется такое число С, что справедливо равенство:

F2(x) = F1(x) + C,

Или можно сказать так, две первообразные для одной и той же функции отличаются друг от друга на постоянное слагаемое.

Определение. Совокупность всех первообразных для функции f(x) на интервале Х называется неопределенным интегралом от функции f(x) и обозначается f(x)dx, где - знак интеграла, f(x) – подинтегральная функция, f(x)dx – подинтегральное выражение. Таким образом

f(x)dx = F(x) + C,

F(x) – некоторая первообразная для f(x), С – произвольная постоянная. Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.

Основные свойства неопределенного интеграла.

1. ( (f(x)dx)` = f(x). Производная от неопределенного интеграла равна подынтегральной функции.

2. Дифференциал от неопределенного интеграла равен подинтегральному выражению. d( f(x)dx) = f(x)dx.

3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого.

d(F(x)) = F(x) + C.

4. Постоянный множитель можно выносить за знак интеграла:

, где к - число

5. Интеграл от суммы двух функций равен сумме интегралов от этих функций

(f(x) +φ(x))dx = f(x)dx + φ(x)dx.

Для вычисления неопределенных интегралов от функций используют таблицу неопределенных интегралов, которая приводиться ниже.

Таблица неопределенных интегралов.

1. хα dx = [xα+1 / (α +1)] +C, α ≠ -1, α Є R

2. dx/x = ln│x│+C

3. ax = (ax/ln a)+C, exdx = ex+C

4. sinx dx = -cosx + C

5. cosx dx = sinx + C

6. dx/(cosx)2 = tgx + C

7. dx/(sinx)2 = -ctgx + C

8. dx / 2-x2) = (arcsin x/a) + C

9. dx / 2 – x2) = (-arccos x/a) +C

10. dx / a2 +x2 = 1/a arctg x/a +C

11. dx / a2 +x2 = - 1/a arcctg x/a +C

12. dx / a2 -x2 = 1/2a ln │x+a/x-a│ +C

13. dx / a2 +x2) = ln │x+ 2+x2)│ +C.

Пример 1. Вычислить (2х2 -3 -1)dx.

Решение. Воспользуемся свойствами 4 и 5 неопределенных интегралов и первой табличной формулой. (2х2 -3 -1)dx = 2 х2 dx - 3 х1/2 dx - dx=

= 2(x2/2) – 3[(х3/2 *2)/3] – x + C = x2 - 2 3 – x +C.

Пример 2. (2/ -1/х + 4sinx)dx = –1/2dx – ln │х│ - 4cosx + C =

= 2[(x1/2 *2)/1] – ln │x│ - 4 cosx +C = 4 -ln│x│- 4cosx + C.

Для вычисления неопределенных интегралов применяют следующие методы: метод непосредственного интегрирования, метод подстановки(метод замены переменной), метод интегрирования по частям.

Существуют элементарные функции первообразные которых элементарными функциями не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции не интегрируемыми в элементарных функциях.

Например, e x^2 dx, sinх2 dx, cosх2 dx, sinx/x dx, cosx/x dx, dx/lnx – «неберущиеся» интегралы, т.е. не существует такой элементарной функции, что F `(x) = e x^2, F ` (x) = sinx2 и т.д.


Тема 13. Определенный интеграл, его свойства.

Формула Ньютона - Лейбница.

Понятие интегральной суммы.

Пусть на отрезке [a, в] задана функция у = f(x). Разобьем отрезок на п элементарных отрезков точками деления а = х0, х1, х2, …, хп = в. На каждом элементарном отрезке [xi-1, xi] выберем произвольную точку Сi и положим

n
∆хi = xi – xi-1, где i = 1,2,…,п, в каждой точке Сi найдем значение функции f(Ci), составим произведения f(C1)∆x1, f(C2)∆x2, …, f(Ci)∆xi, …, f(Cn)∆xn, рассмотрим сумму этих произведений:

I=1
f(C1)∆x1 + f(C2)∆x2 + … + f(Ci)∆xi + … + f(Cn)∆xn = Σ f(Ci)∆xi.

Эту сумму будем называть интегральной суммой для функции у=f(x) на отрезке [а, в]. Интегральная сумма зависит как от способа разбиения отрезка [a, в] на п частей так и от выбора точек С1, С2, …, Сп на каждом элементарном отрезке разбиения.

Геометрический смысл интегральной суммы.

Пусть у = f(x) неотрицательна на отрезке [а, в]. Рис.1

y = f(x)

у

 

 
 

 


S1 S2 S3

 

 

0 а=х0 в1 х1 с2 х2 с3 х3 =в х

Рис.1

Пусть п=3, тогда а = х0, х1, х2, х3=в.

С123 точки, выбранные произвольно на каждом элементарном отрезке.

S1 = f1(C1) ∆x1 – площадь прямоугольника, построенного на первом отрезке разбиения, ∆х1 = х10,

S2 = f2(C2) ∆x2 – площадь прямоугольника, построенного на втором отрезке разбиения. ∆х2 = х21,

 
S3 = f3(C3) ∆x3 – площадь прямоугольника, построенного на третьем отрезке разбиения. ∆х3 = х32,

I=1
S = S1 + S2 +S3 = f1 (C1)∆x1 + f2 (C2)∆x2 + f3 (C3)∆x3 = Σ f(Ci)∆xi.

Это площадь ступенчатой фигуры, составленной из прямоугольников.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 677; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.186.241 (0.011 с.)