Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Измерение температурных полей тепловизорамиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Тепловизоры представляют собой разновидность пирометров и предназначены для измерения температур, соответствующих инфракрасной части спектра оптического излучения в диапазоне примерно от -50 до 3000 град.С. Конструктивно они состоят из оптической термочувствительной камеры и устройств преобразования и обработки информации. Камера представляет собой многоэлементный приемник излучения – линейчатый или матричный со сканирующим устройством. В качестве чувствительных элементов приемника могут использоваться фотоэлементы на основе полупроводниковых структур. Линзы приемных камер изготавливаются из полупроводников (германий, кремний) и других материалов, способных пропускать инфракрасное излучение. Тепловизоры позволяют осуществлять контроль, измерения и визуализацию температурных полей, а в сочетании с ЭВМ – выполнять цифровую обработку информации. Круг областей их применения очень широк (медицина, микроэлектронное производство, металлургия, космические исследования и др.) [1]. а) б) а – схема; б – блок-схема сигналов. 1 – объект измерений; 2 - фокусирующая линза; 3 – колеблющееся зеркало; 4 – электромагнитный вибратор; 5 – амперметр; 6 – зеленый светофильтр; 7 – красный светофильтр; 8 - оптический клин; 9 – усилитель; 10 – фотоприемник.
Рисунок 25 – Схема автоматического цветового пирометра
Радиационные пирометры Пирометры суммарного излучения (ПСИ) измеряют радиационную температуру тела, поэтому их часто называют радиационными. Принцип действия данных измерителей температуры основан на использовании закона Стефана-Больцмана. Однако в случае применения оптических систем в ПСИ определение температуры ведется по плотности интегрального излучения не во всем интервале длин волн от λ1 = 0 до λ2 =∞, а в значительно меньшем: для стекла рабочий спектральный диапазон составляет 0,4 − 2,5, для плавленого кварца 0,4 − 4, для флюорита 0,4−8 мкм [3]. Датчик пирометра выполняется в виде телескопа, линза объектива которого фокусирует на термочувствительном приемнике излучение нагретого тела. В качестве чувствительного элемента используются термопары, термобатареи, болометры (металлические и полупроводниковые), биметаллические спирали и т.п. Наиболее широко применяются термобатареи, в которых используется 8−14 миниатюрных термопар (например, хромель−копелевые), соединенных последовательно. Поток излучения попадает на расклепанные в виде тонких зачерненных лепестков рабочие концы термопар. Свободные концы термопар привариваются к тонким пластинкам, закрепленным на слюдяном кольце. Металлические выводы служат для подсоединения к измерительному прибору, в качестве которого обычно используются потенциометры или милливольтметры. Рабочие концы термопар поглощают падающую энергию и нагреваются. Свободные концы находятся вне зоны потока излучения и имеют
б − расстояние от телескопа до излучателя слишком велико; в − установка телескопа правильная; г − направление телескопа неправильное. Рисунок 26 − Устройство приемника излучения телескопа ПСИ (а) и вид в окуляре взаимного расположения излучателя (объекта измерения температуры) и термобатареи Диафрагма, устанавливаемая в телескопе, ограничивает телесный угол визирования, что исключает влияние на показания размеров излучателя и его расстояния от пирометра. При этом на термобатарею попадает излучение только с определенного небольшого участка объекта измерения. Размеры этого участка определяются по показателю визирования, который является отношением наименьшего диаметра излучателя к расстоянию от объекта измерения до объектива телескопа. При этом изображение круга, вписанного в излучатель, полностью перекрывает отверстие диафрагмы, находящейся перед термобатареей. Телескопы с показателем визирования более 1/16 являются широкоугольными, при этом показателе равном или меньшем 1/16 − узкоугольными. Пирометры суммарного излучения (ПСИ) имеет меньшую точность по сравнению с другими пирометрами. Методические погрешности измерения температуры при использовании ПСИ возникают: вследствие значительной ошибки определения интегральной степени черноты εΣ, из-за неправильной наводки телескопа 1-з излучатель, из-за влияния излучения кладки (измерение температуры в печах) и из-за поглощения энергии водяными парами SO2 и CO2, содержащихся в слое атмосферы, находящейся между излучателем и пирометром. Вследствие последней причины оптимальным считается расстояние 0,8−1,3 м. ПСИ измеряют температуру в интервале от 100 до 2500 °С. Основная допустимая погрешность технических промышленных пирометров возрастает с увеличением верхнего предела измерения: при температуре 15000C он составляет ±15 0С, при 2000 °С − ±20 °С, при 2500 °С − ±25 °С. Оптические пирометры. Принцип действия оптических пирометров основан на использовании зависимости плотности потока монохроматического излучения от температуры (закон Планка). На рисунке 27 схематично представлен яркостный оптический пирометр, работающий по принципу сравнения (на узком участке спектра) яркости контролируемого объекта с яркостью образцового излучателя [1]. Сравнивая яркости двух объектов по спектральным плоскостям излучения можно измерить температуру контролируемого объекта. В качестве образцового излучателя в пирометре используется лампа с вольфрамовой нитью 4. оптическая часть пирометра представляет собой телескоп с объективом 1 и окуляром 7. Для ограничения полосы частот перед окуляром размещен красный светофильтр 6. Оператор, наблюдая контролируемый объект через окуляр, сравнивает его яркость с яркостью вольфрамовой нити и, изменяя последнюю регулирование тока I в цепи нити, добивается равенства яркостей. Этот момент наступает, когда нить становится неразличимой на красном фоне контролируемого объекта. Яркость нити и соответствующая температура определяются по их зависимости от тока. 1 – объектив; 2 - диафрагма; 3 – серый светофильтр; 4 – вольфрамовая нить лампы; 5 – окуляр; 6 – красный светофильтр; 7 – окуляр; 8 – ручка (поворачивается вместе с лампой на 90°). Рисунок 27 − Яркостный оптический пирометр
Пирометры частичного излучения (ПЧИ) первой группы имеют простую конструкцию. Поток от объекта с помощью линзы и диафрагмы фокусируется на приемной площадке приемника излучения, в качестве которых в основном используются германиевые (спектральный диапазон 0,8-1,8 мкм) и кремниевые (0,5-1,1 мкм) фотодиоды, причем последние измеряют более высокие температуры. В цепь фотодиода, работающего в генераторном режиме, последовательно включается сопротивление нагрузки. Вторичный измерительный преобразователь обеспечивает получение усиленного нормированного выходного сигнала иего передачу быстродействующий регистрирующий прибор или в АСУ ТП. Данные пирометры характеризуются малой инерционностью и высокой надежностью в работе. Пределы измерения от 450 до 2500 ºС и выше. Основная допускаемая погрешность ±0,6 %. При использовании в качестве приемника излучения фотосопротивлений с эффективными длинами волн в интервале 2,2-3,43 мкм (2,2; 2,3; 2,4; 2,5; 3,43) ПЧИ позволяют контролировать температуру в интервале от 50 до 1400 ºС с максимальной основной погрешностью 1,0-2,5 %. Стационарные ПЧИ фотодиодного типа имеют небольшие габариты (диаметр корпуса 25 и 50 мм, длина 195 и 275 мм). Показатель визирования колеблется от 1/25 до 1/300. Приемник излучения термостатирован. Температура термостатирования (48 ºС) регулируется с помощью специального транзистора вторичным измерительным преобразователем. В ряде конструкций оптическая система ПИ выполняется в виде световодов; прямых или гибких, что позволяет уменьшить размеры пирометра и площадки визирования. Преимущество ПИ с гибкими стекловолокнистыми световодами: 1)отсутствие контакта с измеряемым объектом, что особенно важно при контроле температур движущихся объектов; 2) у измерительной системы практически отсутствует инерционность, так как время срабатывания составляет ~ 1,25 мс; 3) сигнал устойчив по отношению к внешним воздействиям (индуктивному, механическому и т.п.); 4) аппаратура активно противостоит нагреву (до 1200 °С), давлению (~ 210 МПа), воздействию электрического поля и высокого напряжения, химическому воздействию агрессивных сред; 5) с помощью систем линз можно реализовать большой диапазон длин световодов (до 10 м) и снимать информацию с площадок объекта очень малых размеров, вплоть до 0,1 мм; 6) возможность переноса лучистой энергии в 70 раз больше по сравнению с другими ПИ, что обеспечивает большую точность измерений и разрешающую способность аппаратуры. Переносные ПЧИ обеспечивают измерение температуры в интервале 15-1500 ºС при рабочем расстоянии от ПИ до объекта 0,6-15 м с допускаемой основной погрешностью 1,0−2,5 % и показателями визирования от 1/15 до 1/250 [3]. Конструктивно ПИ выполнен в виде малогабаритного переносного прибора (рисунок 28), по своему внешнему виду напоминающему пистолет. Оператор с помощью переключателя 23 и корректора 16 устанавливает на табло 15 величину степени черноты измеряемого объекта. Затем переключатель 23 переводится в крайнее верхнее положение (ºС), и оператор через окно окуляра 9 наводит ПИ на объект. Нажатием на кнопку включения запоминания 20 на цифровом табло фиксируется величина измеренного значения температуры [3]. 1 − кожух приемной камеры; 2 − рукоятка; 3 − индикаторная панель; 4 − переходная планка; 5 − кронштейн; 6, 7 − платы электронной части прибора; 8 − окуляр; 9 − окно окуляра; 10 − зеркало окуляра; 11 − зеркало; 12 − защитное стекло; 13 − линза объектива; 14 − приемник излучения; 15 − цифровое табло; 16 − ручка установки ε; 17 − блок питания; 18 − блок образования корректирующего сигнала на степень черноты объекта; 19 − клеммы подключения питания; 20 − кнопка включения запоминания измеренного значения температуры; 21 − страховочный ремень; 22 − тумблер включения питания прибора; 23 − переключатель табло; 24 − крышка с защелкой Рисунок 28 − Устройство переносного пирометра частичного излучения
Таким образом, данный ПИ обеспечивает индикацию измеряемой температуры и задаваемой степени черноты, запоминание текущего и максимального значений температуры, индикацию разряда аккумуляторной батареи питания. Установка величины степени черноты производится в пределах от 0,1 до 1,0 с дискретностью 0,01. Лабораторная работа № 3 Цель работы – изучение бесконтактного метода измерения, а также сравнение показаний радиационного и оптического пирометров, изучение принципа действия приборов. Порядок выполнения работы Перед началом работы необходимо ознакомиться с основными теоретическими положениями, описанием установки, а также с правилами эксплуатации оптического пирометра (приложение Б).
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1444; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.219.203 (0.012 с.) |