Взаимная индукция. Трансформатор



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Взаимная индукция. Трансформатор



ВЗАИМНАЯ ИНДУКЦИЯ – явление индуктирования (наведения) эдс индукции в одной цепи (катушке) при изменении электрического тока в другой цепи. Ток I1, проходя по виткам W 1 первой катушки, вызывает магнитный поток, часть которого Ф (1-2) пронизывает витки второй катушки W2 (рис.), образуя потокосцепление взаимной индукции

Y = W2 Ф (1-2).

Магнитный поток Ф 1-2 и, следовательно, потокосцепление пропорциональны току

Y 1-2 = M 1 2 I 1. Аналогично ток I2, проходя по виткам второй катушки, вызывает магнитный поток Ф 2-1, пронизывающий витки первой катушки W 1, образуя потокосцепление взаимной индукции

Y 2-1 = W 1 Ф 2-1. Для этого случая потокосцепление пропорционально току Y 2-1 = M 2-1 I 2.

Трансформатором называется прибор дающий возможность повышать или понижать напряжение в цепи переменного тока.

Работа Т. основана на использовании явления электромагнитной индукции.

Т. Состоит из стального сердечника и двух размещённых на нём катушек(обмоток). Обмотки из изолированного провода электрически не связаны между собой. Одна из них(первичная) присоединяются к источнику переменного тока, а к другой обмотке(втоичной) подключён потребитель. Назначение сердечника – увеличивать магнитный поток т.е. усиливать индуктивную связь между обмотками. Переменный ток проходя по виткам первияной обмотки создаёт в стальном сердечнике переменное магнитное поле,которое пересекая витки вторичной обмотки,наводит в них э.д.с. индукции.

Отношение числа витков первичной обмотки к числу вторичной обмотки называется коэффициентом трансформации. k=w1/w2, к-коэфициент трансформации, w-числа витков первичной и вторичной обмоток. Если коэффициент меньше единицы то Т.повышающий, если больше – понижающий.

 

 

Энергия магнитного поля.

Для определения энергии магнитного поля рассмотрим контур, состоящий из источника э.д.с. - ε, катушки индуктивности - L и сопротивления - R (рис.3.4). При замыкании цепи ток возрастает от 0 до I, и, следовательно, возникает э.д.с. самоиндукции εis, направленная против э.д.с. ε, возбуждающей ток. При размыкании цепи сила тока уменьшается от I до 0, что вызывает появление э.д.с. самоиндукции εis того же направления, что и направление внешней ε. Можно предположить, что на увеличение тока в контуре затрачивается дополнительная работа, идущая на создание энергии магнитного поля. При снижении тока эта энергия выделяется в виде дополнительного джоуль-ленцева тепла. Пусть при замыкании контура ток меняется со скоростью dI/dt. Тогда, как мы уже знаем, в контуре индуцируется э.д.с. самоиндукции εs, равная -LdI/dt, препятствующая изменениям тока. В контуре действует также постоянная э.д.с. ε. Если за положительное направление тока принять то направление, в котором ε заставляет течь ток в контуре, то полная э.д.с. в любой момент времени будет равна ε- LdI/dt. Эта суммарная э.д.с. вызывает ток I через сопротивление R. На сопротивлении происходит падение напряжения, равное IR. Закон Ома для контура имеет вид

.

Подсчитаем работу, совершаемую источником э.д.с. за время dt. Для этого воспользуемся формулой для мощности тока N=dA/dt=Iε. Объединив два последних выражения, получим

Первое слагаемое dA1 = I2Rdt – это работа, расходуемая на нагревание проводника, т.е. тепло, выделяемое в проводнике за время dt. Второе слагаемое dA2 = LIdI – работа, обусловленная индукционными явлениями. Данная дополнительная работа, затрачиваемая на увеличение силы тока в контуре от 0 до I, находится как интеграл: Полученная работа LI2/2 представляет собой собственную энергию тока в контуре с индуктивностью L.

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током. Эта энергия запасена в магнитном поле катушки так же, как энергия электрического поля запасена в заряженном конденсаторе. Таким образом, В этой формуле магнитная энергия выражена через параметры, характеризующие контур с током – силу тока I и индуктивность катушки L. Ту же энергию Wm можно выразить через параметры, характеризующие само магнитное поле, а именно, напряженность поля , магнитную индукцию и объем занимаемого полем пространства V. Для этого найдем энергию магнитного поля соленоида. Воспользуемся полученным нами ранее выражением для индуктивности соленоида:

L = n2μμ0V.

Индукция магнтного поля соленоида В = nμμ0I, откуда I=B/nμμ0. Таким образом, искомая энергия:

.

Так как В= μμ0Н, то .

Если магнитное поле однородно, его энергия распределена равномерно по всему объему поля с некоторой объемной плотностью wm: .

Последнее соотношение можно переписать в трех эквивалентных формах:

.Если магнитное поле неоднородно, его объемная плотность меняется от точки к точке. Зная wm в каждой точке, можно найти энергию поля, заключенную в некотором объеме V. Для этого нужно вычислить интеграл:

 

Электромагнитные волны

Английский ученый Джеймс Максвелл высказал гипотезу о существовании в природе особых волн, способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами. По представлениям Максвелла: при любом изменении электрического поля возникает вихревое магнитное поле и, наоборот, при любом изменении магнитного поля возникает вихревое электрическое поле. Процесс взаимопорождения электрических и магнитных полей происходит во взаимно перпендикулярных плоскостях. Переменное электрическое поле порождает вихревое магнитное поле, переменное магнитное поле порождает вихревое электрическое поле.

Электрические и магнитные поля могут существовать не только в веществе, но и в вакууме. Поэтому должно быть возможным распространение электромагнитных волн в вакууме. Условием возникновения электромагнитных волн является ускоренное движение электрических зарядов. Так, изменение магнитного поля происходит при изменении тока в проводнике, а изменение тока происходит при изменении скорости зарядов, т. е. при движении их с ускорением. Скорость распространения электромагнитных волн в вакууме, по расчетам Максвелла, должна быть приблизительно равна 300 000 км/с. Впервые опытным путем получил электромагнитные волны физик Генрих Герц, использовав при этом высокочастотный искровой разрядник (вибратор Герца). Герц опытным путем определил также скорость электромагнитных волн. Она совпала с теоретическим определением скорости волн Максвеллом. Простейшие электромагнитные волны — это волны, в которых электрическое и магнитное поля совершают синхронные гармонические колебания. Электромагнитные волны обладают всеми основными свойствами волн. Они подчиняются закону отражения волн: угол падения равен углу отражения. При переходе из одной среды в другую преломляются и подчиняются закону преломления волн: отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная отношению скорости электромагнитных волн в первой среде к скорости электромагнитных волн во второй среде и называется показателем преломления второй среды относительно первой. Явление дифракции электромагнитных волн, т. е. отклонение направления их распространения от прямолинейного, наблюдается у края преграды или при прохождении через отверстие. Электромагнитные волны способны к интерференции. Интерференция — это способность когерентных волн к наложению, в результате чего волны в одних местах друг друга усиливают, а в других местах — гасят. (Когерентные волны — это волны, одинаковые по частоте и фазе колебания.) Электромагнитные волны обладают дисперсией, т. е. когда показатель преломления среды для электромагнитных волн зависит от их частоты. Опыты с пропусканием электромагнитных волн через систему из двух решеток показывают, что эти волны являются поперечными. При распространении электромагнитной волны векторы напряженности Е и магнитной индукции В перпендикулярны направлению распространения волны и взаимно перпендикулярны между собой. Если электромагнитные волны возникают в контуре из катушки и конденсатора, то переменное магнитное поле оказывается связанным с катушкой, а переменное электрическое поле — сосредоточенным между пластинами конденсатора. Такой контур называется закрытым. Закрытый колебательный контур практически не излучает электромагнитные волны в окружающее пространство. Если контур состоит из катушки и двух пластин плоского конденсатора, то под чем большим углом развернуты эти пластины, тем более свободно выходит электромагнитное поле в окружающее пространство Предельным случаем раскрытого колебательного контура является удаление пластин на противоположные концы катушки. Такая система называется открытым колебательным контуром.

 

 

Шкала электромагнитных волн

Электромагнитные волны пронизывают все окружающее нас пространство. В первую очередь это свет, а также радиоволны, тепловое излучение, ультра-фиолетовое, рентгеновское и γ-излучение. Все эти электромагнитные волны различаются по длине волны и, соответственно, по частоте. Длины электромагнитных волн лежат в пределе V=лямда на ню

Лямда = от 108до1013

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

диапозоны Получение и применение
Низко частотные Волны(Низкие частоты; Звуковые частоты.) Генераторы переменного тока; Звуковые генераторы. Используются в электроакустике (микрофоны), кино, радиовещании.
Радиоволны(Длинные,средние,короткие,дециметровые) Получают с помощью колебательных контуров и макроскопических вибраторов.Применение: Радиосвязь, телевидение, радиолокация.
Инфра красные лучи Излучение нагретых тел (газоразрядные лампы и т.п.) Применение: Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.
Ультра фиолето вые лучи Излучение Солнца, ртутных ламп и т.п. Используются в ультрафиолетовой микроскопии, в медицине.
Гамма излучение Возникают при радиоактивных распадах ядер, Используются в медецине ,в гаммадефектоскопии при изучении свойств вещества.
Рентгенов ские лучи Получают при помощи рентгеновской трубки.Применение:В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).  

 

 



Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.220.231.235 (0.006 с.)