Электроемкость. Конденсаторы. Параллельное соединение конденсаторов. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электроемкость. Конденсаторы. Параллельное соединение конденсаторов.



Различные тела вмещают различное количество электричества,т.е.обладают неодинаковой электроёмкостью.

Способность тела накапливать и удерживать электрический заряд называется электроёмкостью. С=q/φ Кл\В, Φ-потенциал поля, q-заряд Для получния необходимой электроёмкости служит конденсатор. К. образуется из двух металлических пластин, изолированных одна от другой.Если одну пластину зарядить +,а вторую -, то разноимённые заряды притягиваясь друг к другу,будут удерживаться на пластинах «запасаться» Конденсатор служит накопителем энергии. Пластины К.называют обкладками(алюминий,латунь), а изолтрующий слой – диэлектриком (бумага,масло,порафин,воздух). Чем больше ёмкость конденсатора и чем выше потенциал,до которого он заряжен, тем большее количество электричества в нём запасено: Q=CU. Q-заряд запасённый в конденсаторе, C-ёмкость конденсатора,т.е.величина показывающая какой заряд может быть накоплен при данном напряжении, U-приложенное напряжение. Ёмкость конденсатора (накапливаемый им заряд) увеливается прямо пропорционально размерам его пластин.

Диэлектрическая проницаемость- характеризует способность диэлектрика концентрировать электрическое поле.Она показывает во сколько раз увеличивается ёмкость конденсатора если воздушный диэлектрик заменить другим.

Например: если диэл.прониц.=6, то это значит что при использовании этого вещ-ва поток электрического поля в 6ть раз больше чем при использовании воздуха.

общая формула для вычисления емкости любого конденсатора есть: ФОРМУЛА И РИСУНОК!!! При параллельном соединении конденсаторов общая емкость их увеличивается. По сразнению с ёмкостью каждого из них,потому что как бы увеличивается общая площадь обкладок конденсаторов.

Параллельное включение нескольких конденсаторов применяются для получения большей ёмкости,чем ёмкость каждого из них в отдельности. При параллельном соединении напряжение на всех конденсаторах одинаковое.

15.Постоянный электрический ток. Си;.а тока, вектор плотности тока. Уравнение не­прерывности. Условие стационарности тока.

Электрическим током называют направленное движение заряженных частиц. Количественными характеристиками тока являются его сила тока (отношение заряда: переносимого через поперечное сечение проводника в единицу времени):

и его плотность, определяемая соотношением:

Опыт показывает, что сила электрического тока, протекающего по проводнику, пропорциональна приложенной к его концам разности потенциалов (закон Ома). Постоянный для выбранного проводника коэффициент пропорциональности между током и напряжением называют электрическим сопротивлением: (3)

Силой тока называется физическая величина равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в системе СИ измеряется в Амперах.

По закону Ома сила тока I пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению проводника R: Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.Согласно закону Ома плотность тока в среде пропорциональна напряжённости электрического поля и проводимости среды : Плотность тока в системе СИ измеряется в амперах на квадратный метр.

Динамика изменения неравновесных носителей по времени при наличии генерации и рекомбинации в полупроводнике, а также при протекании электрического тока определяется уравнением непрерывности. Для полупроводника n-типа уравнение непрерывности будет описывать динамику изменения концентрации дырок pn: (1.43) где Jp - дырочный ток, включающий дрейфовую и диффузионную компоненту, Gp - темп генерации неравновесных носителей, а Rp - темп рекомбинации. Уравнение непрерывности - это уравнение сохранения числа частиц в единице объема. Это уравнение показывает, как и по каким причинам изменяется концентрация неравновесных дырок со временем. Во-первых, концентрация дырок может изменяться из-за дивергенции потока дырок, что учитывает первое слагаемое. Во-вторых, концентрация дырок может изменяться из-за генерации (ударная ионизация, ионизация под действием света и т. д.). В-третьих, концентрация дырок может изменяться из-за их рекомбинации, что учитывает третье слагаемое [10, 5].

Условие стационарности тока

Окружим участок проводника, по которому течет ток с плотностью

, замкнутой поверхностью S. По определению вектора его поток по этой поверхности равен суммарному току I, вытекающему из замкнутой поверхности S. Заряд не может бесследно исчезнуть или возникнуть в какой-либо области. Поэтому при изменении заряда в некоторой области он должен вытекать или втекать в нее, создавая электрический ток. Но если заряды в проводнике перераспределяются (в одной области суммарный заряд уменьшается, а в другой - увеличивается), то изменяются и потенциалы этих областей. А изменение потенциалов со временем приводит к изменению электрического поля. Поэтому и ток не будет постоянным. Отсюда следует условие стационарности тока:

или . Линии постоянного или стационарного тока нигде не должны начинаться или заканчиваться: они замкнуты. Поэтому цепь постоянного тока обязательно должна быть замкнута.

 


16. Закон Ома для участка цепи. Электрическое сопротивление. Закон Ома в диффе­ренциальной форме.

Закон Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.

Закон Ома гласит: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.  

И записывается формулой:

     

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом). Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Закон Ома в дифференциальной форме

Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

где: — вектор плотности тока,

— удельная проводимость, — вектор напряжённости электрического поля. Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1). Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред. Электри́ческое сопротивле́ние — скалярная физическая величина, характеризующая свойства проводника и равная отношению напряжения на концах проводника к силе электрического тока, протекающему по нему.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно определить как где

R — сопротивление; U — разность электрических потенциалов на концах проводника, измеряется в вольтах;

I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах.

Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.

Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:

где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения.

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 408; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.212.99.208 (0.016 с.)