![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие сведения о червячных передачах.Червячная передача состоит из червяка и сцепляющегося с ним червячного колеса, представляющего собой разновидность косозубого колеса. Червячная передача применяется в тех случаях, когда оси ведущего и ведомого элементов перекрещиваются (обычно под углом 90 °), и может рассматриваться, как разновидность винтовой и зубчатой передачи. Резьба червяка: однозаходная или многозаходная, правая или левая. Наиболее распространена правая с числом заходов z =1 ¸ 4 (по ГОСТ 2144 - 66 стандартизованы червяки одно, двух и четырех заходные) Классификация. Различают два основных вида червячных передач: цилиндрические червячные передачи, глобоидные передачи (с глобоидным червяком). В зависимости от формы профиля резьбы червяков различают: 1) архимедовы; 2) конволюнтные; 3) эвольвентные; 4) с вогнутым профилем витков резьбы. Архимедовы в осевом сечении имеет трапецеидальный профиль резьбы. конволюнтные имеет трапецеидальный профиль резьбы в нормальном сечении витков; эвольвентные - характеризуется тем, что профиль резьбы в его осевом сечении эвольвентный; Червяки с вогнутым профилем витков резьбы обеспечивают большую поверхность контакта с зубьями червячных колес. Наиболее широко применяются архимедовы червяки, т. к. технология их производства проста и хорошо разработана. В передачах с архимедовыми, конволютными и эвольвентными червяками профиль зубьев червячных колес эвольвентный. Модули эвольвентных червячных передач стандартизованы.
В глобоидной передаче по сравнению с червячной цилиндрической число зубьев колеса и витков резьбы червяка, находящихся в зацеплении больше, следовательно, несущая способность выше (в 1,5 ¸ 4 раза). Однако они требуют повышенной точности изготовления и монтажа и повышенного охлаждения. 27 Основные параметры червячных передач Геометриячервяка. На рис.1.75 изображен архимедов червяк и показаны его основные размеры. Основным расчетным параметром червяка (и червячного колеса) является расчетный модуль т – линейная величина, в π раз меньшая расчетного шага червяка р,т.е.: т = р/ π. Модули m определяются в осевом сечении червяка и выбираются согласно ГОСТ «Передачи червячные цилиндрические. Модули и коэффициенты диаметра червяка», извлечение из которого приведено в табл. 1.2 (первый ряд следует предпочитать второму). Делительный диаметр червяка принимается кратным модулю: d 1= qm, где q– коэффициент диаметра червяка, стандартные величины которого приведены в; кроме указанных в таблице, стандарт допускает применение значений q= 7,5 и q= 12. Многозаходные червяки кроме шага характеризуются также ходом рz,причем pz = pz 1, где z 1– число заходов; р – шаг червяка. Очевидно, что у однозаходных червяков шаг и ход равны между собой. Делительный угол подъема линии витка обозначается γ и определяется следующим образом: tgγ = pz /(π d 1)= π mz 1/(π mq) = z 1/ q. В машиностроении (например, в зубофрезерных станках) применяют разноходовые цилиндрические червяки, разноименные поверхности витков которых имеют разный ход, т.е. имеют неодинаковые (отличающиеся на десятые доли градуса) углы подъема линии витка. У разноходовых червяков толщина по хорде витка неодинакова, что дает возможность за счет осевого перемещения червяка выбирать зазор, образовавшийся в результате износа зубьев червячного колеса. Разноходовые червяки характеризуются средним ходом, т.е. ходом средней линии витка. В соответствии со стандартом на исходный червяк устанавливаются следующие основные параметры витков червяка: α = 20° – угол профиля витка в осевом сечении; ha 1 = т – высота головки витка червяка; hf 1 = 1,2 m – высота ножки витка червяка; h 1= ha 1+ hf 1= 2,2 m – высота витка червяка. Остальные размеры нарезанной части червяка определяются так: диаметр вершин витков червяка da 1 = d 1 + 2 ha 1 = qm+ 2 m= m (q+ 2); диаметр впадин червяка df 1 = d l – 2 hf 1 = qm – 2·1,2 m = m (q– 2,4); длина b 1нарезанной части червяка: при числе заходов z 1 = 1 и z 1= 2 b 1≥ (11 +0,06z2) m; при числе заходов z 1= 4 b 1> (12,5 + 0,09 z 2) m, где z 2 – число зубьев червячного колеса (для шлифуемых и фрезеруемых червяков полученную величину b 1следует увеличить на 25 мм – при m < 10 мм; на 35...40 мм – при т = 10...16 мм; на 50 мм – при т > 16мм). Применение трехзаходных червяков стандартами не предусматривается. Геометрия червячного колеса. На рис.1.76 изображено червячное колесо в зацеплении с червяком и показаны основные размеры колеса, а именно: диаметр делительной окружности червячного колеса d 2 = тz 2; диаметр вершин зубьев червячного колеса в среднем сечении da 2 = d 2 + 2 ha 2 = mz 2 + 2 m = m (z 2 + 2); диаметр впадин червячного колеса в среднем сечении df 1 = d 2 – 2 hf 2 = mz 2 – 2·1,2 m = m (z 2 – 2,4); наибольший диаметр червячного колеса dae 2≤ da 2+ 6 m /(z1+ 2) Ширину венца червячного колеса b 2определяют в зависимости от диаметра вершин и числа заходов червяка: при z1≤ 3 b 2≤ 0,75 da 1; при z1= 4 b2 ≤0,67 da 1. Рис. 1.76. Основные размеры червячного колеса На рис.1.76 тонкими линиями изображено червячное колесо, представляющее собой цилиндрическое косозубое колесо. Такая конструкция передачи характеризуется точечным контактом, следовательно, малой нагрузочной способностью и поэтому применяется в несиловых передачах. Наиболее распространены червячные передачи, у которых зубья колеса имеют вогнутую форму и охватывают червяк по дуге с углом2λ = 60...110°. При этом образуется линейный контакт витков червяка и зубьев колеса, в результате чего значительно повышается нагрузочная способность передачи. Межосевое расстояние червячной передачи а = 0,5(d l + d 2)= 0,5 m (q+ z 2). В силовых червячных передачах рекомендуется принимать следующие значения числа зубьев червячного колеса. z 2≥ 22 – при однозаходном червяке; z 2≥ 26 – при многозаходном червяке. Кинематика червячных передач. Выше говорилось о том, что червячное зацепление в сечении средней торцовой плоскостью колеса можно рассматривать как плоское зубчато-реечное зацепление, причем скорость v 1осевого перемещения витков червяка равна окружной скорости v 2червячного колеса на делительной окружности. Так как за каждый оборот червяка сечение витка смещается в осевом направлении на величину хода резьбы pz = pz 1то v 1 = pz l n l= π mz 1 n 1,червячное колесо имеет окружную скорость v2 = π d 2 n 2= π mz 2 n 2. Так как v 1= v2, то z l n l= z 2 n 2или z 1ω1 = z 2ω2. Следовательно, передаточное число червячной передачи: u = ω1/ω2= п 1/ n 2 = z 2/ z 1. Передаточное число червячной передачи равно отношению числа зубьев червячного колеса к числу заходов червяка (числу витков червяка). В силовых передачах, в частности, в стандартных передачах редукторов, передаточные числа принимают в пределах и = 8…80.
28 Валы и оси. Общие сведения. Вал – деталь машин, предназначенная для передачи крутящего моментавдоль своей осевой линии. В большинстве случаев валы поддерживают вращающиеся вместе с ними детали (зубчатые колеса, шкивы, звездочки и др.). Некоторые валы (например, гибкие, карданные, торсионные) не поддерживают вращающиеся детали. Валы машин, которые кроме деталей передач несут рабочие органы машины, называются коренными. Коренной вал станков с вращательным движением инструмента или изделия называется шпинделем. Вал, распределяющий механическую энергию по отдельным рабочим машинам, называется трансмиссионным. В отдельных случаях валы изготовляют как одно целое с цилиндрической или конической шестерней (вал-шестерня) или с червяком (вал-червяк). По форме геометрической оси валы бывают прямые,коленчатые (рис.1.77, в) и гибкие (с изменяемой формой оси). Простейшие прямые валы имеют форму тел вращения. На рис.1.77 показаны гладкий (а) и ступенчатый (б)прямые валы. Ступенчатые валы являются наиболее распространенными. Для уменьшения массы или для размещения внутри других деталей валы иногда делают с каналом по оси; в отличие от сплошных такие валы называют полыми. Рис. 1.77. Виды валов Ось – деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент. Оси бывают вращающимися (рис.1.78, а)и неподвижными (рис.1.78, б). Вращающаяся ось устанавливается в подшипниках. Примером вращающихся осей могут служить оси железнодорожного подвижного состава, примером невращающихся – оси неведущих колес автомобиля. Рис. 1.78. Виды осей Из определений видно, что при работе валы всегда вращаются и испытывают деформации изгиба и кручения, а оси – только деформацию изгиба (возникающими в отдельных случаях деформациями растяжения и сжатия чаще всего пренебрегают). Конструктивные элементы валов и осей (рис.1.79). Опорная часть вала или оси называется цапфой. Концевая цапфа называется шипом, а промежуточная – шейкой. Концевая цапфа, предназначенная нести преимущественную осевую нагрузку, называется пятой. Шипы и шейки вала опираются на подшипники, опорной частью для пяты является подпятник. По форме цапфы могут быть цилиндрическими, коническими, шаровыми и плоскими (пяты). Рис. 1.79. Конструктивные элементы валов и осей Кольцевое утолщение вала, составляющее с ним одно целое, называется буртиком (рис.1.79).Переходная поверхность от одного сечения к другому, служащая для упора насаживаемых на вал деталей, называется заплечиком (рис.1.77). Для уменьшения концентрации напряжений и повышения прочности переходы в местах изменения диаметра вала или оси делают плавными. Криволинейную поверхность плавного перехода от меньшего сечения к большему называют галтелью (рис.1.77). Галтели бывают постоянной и переменной кривизны. Галтель вала, углубленную за плоскую часть заплечика, называют поднутрением. Форма вала по длине определяется распределением нагрузок, т.е. эпюрами изгибающих и крутящих моментов, условиями сборки, и технологией изготовления. Переходные участки валов между соседними ступенями разных диаметров нередко выполняют с полукруглой канавкой для выхода шлифовального круга. Посадочные концы валов, предназначенные для установки деталей, передающих вращающий момент в машинах, механизмах и приборах, стандартизованы. ГОСТ12080–66* устанавливает номинальные размеры цилиндрических концов валов двух исполнений (длинные и короткие) диаметров от 0,8 до 630 мм, а также рекомендуемые размеры концов валов с резьбой. ГОСТ 12081–72* устанавливает основные размеры конических концов валов с конусностью 1:10 также двух исполнений (длинные и короткие) и двух типов (с наружной и внутренней резьбой) диаметров от 3 до 630 мм.
|
||
Последнее изменение этой страницы: 2016-04-07; просмотров: 985; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.205.26.39 (0.006 с.) |