Проверка нормальности распределения результативного признака. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проверка нормальности распределения результативного признака.



Дисперсионный анализ относится к группе параметрических мето­дов и поэтому его следует применять только тогда, когда известно илидоказано, что распределение признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.). Строго говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расче­та показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968* Плохинский Н.А., 1970 и др.).

Произведем необходимые расчеты на примере параграфа 8.3, в котором анализируется длительность мышечного волевого усилия.

Действовать будем по следующему алгоритму:

а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и сопоставим их с критическими значениями, указан­ными Н.А. Плохинским;

б) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения;

в) если эмпирические значения показателей окажутся ниже критиче­ских, сделаем вывод о том, что распределение признака не отличает­ся от нормального.

Таблица 7.1

Вычисление показателей асимметрии и эксцесса по показателю длитель­ности попыток решения анаграмм

хi i – ) i – )2 i – )3 i – )4
    0,94 0,884 0.831 0,781
    2,94 8,644 25,412 74,712
    1.94 3,764 7,301 14,165
    -1,06 1,124 -1,191 1,262
    -0.06 0,004 -0,000 0,000
    0,94 0,884 0,831 0,781
    -2,06 4,244 -8.742 18,009
    -0,06 0,004 -0,000 0,000
    4,94 24,404 120,554 595,536
    3,94 15,524 61,163 240,982
И   -2,06 4,244 -8,742 18,009
    -3.06 9,364 -28,653 87,677
    -0.06 0,004 -0,000 0,000
    -0,06 0.004 -0,000 0,000
    -5,06 25,604 -129,554 655,544
    -2,06 4,244 -8,742 18,009
Суммы     102,944 30,468 1725,467

Для расчетов в Табл. 7.1 необходимо сначала определить сред­нюю арифметическую по формуле:

где хi - каждое наблюдаемое значение признака;

n - количество наблюдений. В данном случае:

Стандартное отклонение (сигма) вычисляется по формуле:

где хi - каждое наблюдаемое значение признака; среднее значение (среднее арифметическое); n - количество наблюдений. В данном случае:

Показатели асимметрии и эксцесса с их ошибками репрезента­тивности определяются по следующим формулам:

где i ) - центральные отклонения;

σ - стандартное отклонение;

п - количество испытуемых. В данном случае:

 

 

Показатели асимметрии и эксцесса свидетельствуют о достовер­ном отличии эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезентативности в 3 и более раз:

Мы видим, что оба показателя не превышают в три раза свою ошибку репрезентативности, из чего мы можем заключить, что распре­деление данного признака не отличается от нормального.

Теперь произведем проверку по формулам Е.И. Пустыльника. Рассчитаем критические значения для показателей А и Е:

 

 

Итак, оба варианта проверки, по Н.А. Плохинскому и по Е.И. Пустыльнику, дают один и тот же результат: распределение результа­тивного признака в данном примере не отличается от нормального рас­пределения.

Можно выбрать любой из двух предложенных вариантов провер­ки и придерживаться его. При больших объемах выборки, по-видимому, стоит производить расчет первичных статистик (оценок па­раметров) на ЭВМ.

 

4) Преобразование эмпирических данных с целью упрощения расчетов

Н.А. Плохинский указывает на возможность следующих преобразований:

1) все наблюдаемые значения можно разделить на одно и то же число k, например перевести показатели из миллиметров в сантиметры и т.п.;

2) все наблюдаемые значения можно умножить на одно и то же число k, например для того, чтобы избавиться от дробных значений;

3) от всех наблюдаемых значений можно отнять одно и то же число А, например наименьшее значение;

4) можно сделать двойное преобразование: из каждого значения вычесть число А, а полученный результат разделить на другое число k.

При всех этих преобразованиях результативного признака пока­затели соотношения дисперсий получаются точными и не требуют ника­ких поправок.

Средние величины изменяются, но их можно восстановить, ум­ножая среднюю величину на число k или деля ее на k (варианты 1 и 2) или прибавляя к средней число А (вариант 3) и т. п. Стандартное от­клонение изменяется только при введении множителя или делителя; полученный результат затем придется либо разделить на число к, либо умножить на него (Плохинский Н.А.,1964, с.34-36; Плохинский Н.А., 1970, с.71-72).

В последующих трех параграфах будет рассмотрен метод одно-факторного анализа в двух вариантах:

а) для дисперсионных комплексов, представляющих данные одной и той же выборки испытуемых, подвергнутой влиянию разных условий (разных градаций фактора);

б) для дисперсионных комплексов, в которых влиянию разных условий (градаций фактора) были подвергнуты разные выбор­ки испытуемых.

Первый вариант называется однофакторным дисперсионным ана­лизом для связанных выборок, второй - для несвязанных выборок.

Все предложенные алгоритмы расчетов предназначены для рав­номерных комплексов, где в каждой ячейке представлено одинаковое | число наблюдений.

7.3. Однофакторный дисперсионный анализ для несвязан­ных выборок

Назначение метода

Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда исследуются изменения результативного признака под [влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвер­гаются разные выборки испытуемых. Градаций фактора должно быть не менее трех4.

Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса.

Описание метода

Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 7.2).

После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат.

Суть метода состоит в том, чтобы сопоставить сумму этих возве­денных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте.

___________

4 Градаций может быть и две, но в этом случае мы не сможем установить нели­нейных зависимостей и более разумным представляется использование более про­стых критериев (см. главы 2 и 3).

 

Гипотезы

H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы.

H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 392; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.226.141.207 (0.01 с.)