Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проверка нормальности распределения результативного признака.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Дисперсионный анализ относится к группе параметрических методов и поэтому его следует применять только тогда, когда известно илидоказано, что распределение признака является нормальным (Суходольский Г.В., 1972; Шеффе Г., 1980 и др.). Строго говоря, перед тем, как применять дисперсионный анализ, мы должны убедиться в нормальности распределения результативного признака. Нормальность распределения результативного признака можно проверить путем расчета показателей асимметрии и эксцесса и сопоставления их с критическими значениями (Пустыльник Е.И., 1968* Плохинский Н.А., 1970 и др.). Произведем необходимые расчеты на примере параграфа 8.3, в котором анализируется длительность мышечного волевого усилия. Действовать будем по следующему алгоритму: а) определим показатели асимметрии и эксцесса по формулам Н.А. Плохинского и сопоставим их с критическими значениями, указанными Н.А. Плохинским; б) рассчитаем критические значения показателей асимметрии и эксцесса по формулам Е.И. Пустыльника и сопоставим с ними эмпирические значения; в) если эмпирические значения показателей окажутся ниже критических, сделаем вывод о том, что распределение признака не отличается от нормального. Таблица 7.1 Вычисление показателей асимметрии и эксцесса по показателю длительности попыток решения анаграмм
Для расчетов в Табл. 7.1 необходимо сначала определить среднюю арифметическую по формуле: где хi - каждое наблюдаемое значение признака; n - количество наблюдений. В данном случае: Стандартное отклонение (сигма) вычисляется по формуле: где хi - каждое наблюдаемое значение признака; – среднее значение (среднее арифметическое); n - количество наблюдений. В данном случае: Показатели асимметрии и эксцесса с их ошибками репрезентативности определяются по следующим формулам: где (хi – ) - центральные отклонения; σ - стандартное отклонение; п - количество испытуемых. В данном случае:
Показатели асимметрии и эксцесса свидетельствуют о достоверном отличии эмпирических распределений от нормального в том случае, если они превышают по абсолютной величине свою ошибку репрезентативности в 3 и более раз: Мы видим, что оба показателя не превышают в три раза свою ошибку репрезентативности, из чего мы можем заключить, что распределение данного признака не отличается от нормального. Теперь произведем проверку по формулам Е.И. Пустыльника. Рассчитаем критические значения для показателей А и Е:
Итак, оба варианта проверки, по Н.А. Плохинскому и по Е.И. Пустыльнику, дают один и тот же результат: распределение результативного признака в данном примере не отличается от нормального распределения. Можно выбрать любой из двух предложенных вариантов проверки и придерживаться его. При больших объемах выборки, по-видимому, стоит производить расчет первичных статистик (оценок параметров) на ЭВМ.
4) Преобразование эмпирических данных с целью упрощения расчетов Н.А. Плохинский указывает на возможность следующих преобразований: 1) все наблюдаемые значения можно разделить на одно и то же число k, например перевести показатели из миллиметров в сантиметры и т.п.; 2) все наблюдаемые значения можно умножить на одно и то же число k, например для того, чтобы избавиться от дробных значений; 3) от всех наблюдаемых значений можно отнять одно и то же число А, например наименьшее значение; 4) можно сделать двойное преобразование: из каждого значения вычесть число А, а полученный результат разделить на другое число k. При всех этих преобразованиях результативного признака показатели соотношения дисперсий получаются точными и не требуют никаких поправок. Средние величины изменяются, но их можно восстановить, умножая среднюю величину на число k или деля ее на k (варианты 1 и 2) или прибавляя к средней число А (вариант 3) и т. п. Стандартное отклонение изменяется только при введении множителя или делителя; полученный результат затем придется либо разделить на число к, либо умножить на него (Плохинский Н.А.,1964, с.34-36; Плохинский Н.А., 1970, с.71-72). В последующих трех параграфах будет рассмотрен метод одно-факторного анализа в двух вариантах: а) для дисперсионных комплексов, представляющих данные одной и той же выборки испытуемых, подвергнутой влиянию разных условий (разных градаций фактора); б) для дисперсионных комплексов, в которых влиянию разных условий (градаций фактора) были подвергнуты разные выборки испытуемых. Первый вариант называется однофакторным дисперсионным анализом для связанных выборок, второй - для несвязанных выборок. Все предложенные алгоритмы расчетов предназначены для равномерных комплексов, где в каждой ячейке представлено одинаковое | число наблюдений. 7.3. Однофакторный дисперсионный анализ для несвязанных выборок Назначение метода Метод однофакторного дисперсионного анализа применяется в тех |случаях, когда исследуются изменения результативного признака под [влиянием изменяющихся условий или градаций какого-либо фактора. В данном варианте метода влиянию каждой из градаций фактора подвергаются разные выборки испытуемых. Градаций фактора должно быть не менее трех4. Непараметрическим вариантом этого вида анализа является критерий Н Крускала-Уоллиса. Описание метода Работу начинаем с того, что представляем полученные данные в виде столбцов индивидуальных значений. Каждый из столбцов соответствует тому или иному из изучаемых условий (см. Табл. 7.2). После этого нам нужно просуммировать индивидуальные значения по столбцам и суммы возвести в квадрат. Суть метода состоит в том, чтобы сопоставить сумму этих возведенных в квадрат сумм с суммой квадратов всех значений, полученных во всем эксперименте. ___________ 4 Градаций может быть и две, но в этом случае мы не сможем установить нелинейных зависимостей и более разумным представляется использование более простых критериев (см. главы 2 и 3).
Гипотезы H0: Различия между градациями фактора (разными условиями) являются не более выраженными, чем случайные различия внутри каждой группы. H1: Различия между градациями фактора (разными условиями) являются более выраженными, чем случайные различия внутри каждой группы.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-19; просмотров: 424; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.255.135 (0.006 с.) |