Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Элементы симметрии многогранниковСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Элементами симметрии называются вспомогательные геометрические образы (точка, линия, плоскость и их сочетания), с помощью которых мысленно можно совместить в пространстве равные грани кристалла (многогранника). При этом под симметрией кристалла понимается закономерное повторение в пространстве равных его граней, а также вершин и ребер. Различают три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии. Центром симметрии называется воображаемая точка внутри кристалла, равноудаленная от его элементов ограничения (т. е. противоположных вершин, середин ребер и граней). Центр симметрии является точкой пересечения диагоналей правильной фигуры (куба, параллелепипеда) и обозначается буквой С, а по международной системе Германа-Могена – I. Центр симметрии в кристалле может быть только один. Однако имеются кристаллы, в которых центр симметрии вообще отсутствует. При решении вопроса о том, имеется ли центр симметрии в Вашем кристалле, необходимо руководствоваться следующим правилом: «При наличии центра симметрии в кристалле каждой его грани соответствует равная и противоположная ей грань». На практических занятиях с лабораторными моделями наличие или отсутствие центра симметрии в кристалле устанавливается следующим образом. Кладем кристалл какой-либо его гранью на плоскость стола. Проверяем, присутствует ли сверху равная и параллельная ей грань. Повторяем ту же операцию для каждой грани кристалла. Если каждой грани кристалла отвечает сверху равная и параллельная ей грань, то центр симметрии в кристалле присутствует. Если хотя бы для одной грани кристалла не найдется сверху равной и параллельной ей грани, то центра симметрии в кристалле нет. Плоскостью симметрии (обозначается буквой Р, по международной символике – m) называется воображаемая плоскость, проходящая через геометрический центр кристалла и разделяющая его на две зеркально равные половины. Кристаллы, имеющие плоскость симметрии, обладают двумя свойствами. Во-первых, две его половины, разделенные плоскостью симметрии, равны по объему; во-вторых, они равны, как отражения в зеркале. Для проверки зеркального равенства половин кристалла необходимо из каждой его вершины провести воображаемые перпендикуляр к плоскости и продолжить его на то же расстояние от плоскости. Если каждой вершине соответствует с противоположной стороны кристалла зеркально отраженная ей вершина, то плоскость симметрии в кристалле присутствует. При определении плоскостей симметрии на лабораторных моделях кристалл ставится в фиксированное положение и затем мысленно рассекается на равные половины. Проверяется зеркальное равенство полученных половин. Считаем, сколько раз мы можем мысленно рассечь кристалл на две зеркально равные части. Помните, что кристалл при этом должен быть неподвижен!
Число плоскостей симметрии в кристаллах варьирует от 0 до 9. Например, в прямоугольном параллелепипеде находим три плоскости симметрии, т. е. 3Р. Осью симметрии называется воображаемая линия, проходящая через геометрический центр кристалла, при повороте вокруг которой кристалл несколько раз повторяет свой внешний вид в пространстве, т. е. самосовмещается. Это означает, что после поворота на некоторый угол на место одних граней кристалла становятся другие, равные им грани. Основной характеристикой оси симметрии является наименьший угол поворота, при котором кристалл первый раз «повторяется» в пространстве. Этот угол называется элементарным углом поворота оси и обозначается α, например:
Элементарный угол поворота любой оси обязательно содержится целое число раз в 360°, т. е. (целое число), где n – порядок оси. Таким образом, порядком оси называется целое число, показывающее, сколько раз элементарный угол поворота данной оси содержится в 360°. Иначе, порядок оси – это число «повторений» кристалла в пространстве при полном его повороте вокруг данной оси. Оси симметрии обозначаются буквой L, порядок оси - маленькой цифрой справа внизу, например, L2. В кристаллах возможны следующие оси симметрии и соответствующие им элементарные углы поворота. Таблица 1 Соотношение осей симметрии и элементарных углов поворота
В любом кристалле существует бесконечное количество осей симметрии первого порядка, поэтому на практике они не определяются.
Осей симметрии 5-го и любого порядка выше 6-го в кристаллах вообще не существует. Эта особенность кристаллов формулируется как закон симметрии кристаллов. Закон симметрии кристаллов объясняется специфичностью их внутреннего строения, а именно – наличием пространственной решетки, которая не допускает возможности существования осей 5-го, 7-го, 8-го и так далее порядков. В кристалле может быть несколько осей одного и того же порядка. Например, в прямоугольном параллелепипеде присутствуют три оси 2-го порядка, т. е. 3L2. В кубе - 3 оси 4-го порядка, 4 оси 3-го порядка и 6 осей 2-го порядка. Оси симметрии наивысшего порядка в кристалле называют главными. Нахождение осей симметрии на моделях во время лабораторных занятий осуществляется в следующем порядке. Кристалл берется кончиками пальцев одной руки за его противоположные точки (вершины, середины ребер или граней). Воображаемая ось ставится перед собой вертикально; запоминается какой-либо характерный внешний вид кристалла. Затем кристалл вращается другой рукой вокруг воображаемой оси до тех пор, пока его первоначальный внешний вид не «повторится» в пространстве. Считаем, сколько раз кристалл «повторяется» в пространстве при полном повороте вокруг данной оси. Это и будет ее порядок. Аналогичным образом проверяются все другие теоретически возможные направления прохождения оси симметрии в кристалле. Данные оси симметрии называются простыми. Кроме них существуют сложные оси симметрии, называемые зеркально-поворотными и инверсионными. Зеркально-поворотная ось симметрии представляет собой мысленное сочетание простой оси и перпендикулярной ей плоскости симметрии. Зеркально-поворотные оси могут быть тех же порядков, что простые, но на практике используется только ось 4-го порядка, которая обозначается L42 и всегда ровна L2, но не наоборот. Инверсионная ось симметрии представляет собой мысленное сочетание простой оси симметрии и центра симметрии. На практике и в теории используются только инверсионные оси 4-го и 6-го порядка. Они обозначаются Li4 и Li6. Сочетание всех элементов симметрии кристалла, записанное условными обозначениями, называется его формулой симметрии. В формуле симметрии сначала перечисляются оси симметрии, затем плоскости симметрии и последним показывается наличие центра симметрии. Между обозначениями не ставится точек или запятых. Например, формула симметрии прямоугольного параллелепипеда: 3L33PC; куба – 3L44L36L29PC. Виды симметрии кристаллов Видами симметрии называются возможные в кристаллах сочетания элементов симметрии. Каждому виду симметрии соответствует определенная формула симметрии. Всего для кристаллов теоретически доказано наличие 32 видов симметрии. Таким образом, всего существует 32 формулы симметрии кристаллов. Все виды симметрии объединяются в 7 ступеней симметрии с учетом наличия характерных элементов симметрии. 1. Примитивная – объединяются виды симметрии, представленные только одиночными осями симметрии разного порядка: L3, L4, L6. 2. Центральная – помимо одиночных осей симметрии присутствует центр симметрии; кроме того, наряду с наличием четных осей симметрии появляется еще плоскость симметрии: L3С, L4PC, L6PC. 3. Планальная (план – плоскость, греч.) – присутствуют одиночная ось и плоскости симметрии: L22P, L44P.
4. Аксиальная (аксис – ось, греч.) – присутствуют только оси симметрии: 3L2, L33L2, L66L2. 5. Планаксиальная – присутствуют оси, плоскости и центр симметрии: 3L23PC, L44L25PC. 6. Инверсионно-примитивная – наличие единственной инверсионной оси симметрии: Li4, Li6. 7. Инверсионно-планальная – наличие, помимо инверсионной оси, простых осей и плоскостей симметрии: Li44L22P, Li63L23P. В каждую ступень симметрии объединяется разное количество видов симметрии: от 2 до 7. Сингонии Сингонией называется группа видов симметрии, обладающих одноименной главной осью симметрии и одинаковым общим уровнем симметрии (син – сходный, гониа – угол, дословно: сингония – сходноугольность, греч.). Переход от одной сингонии к другой сопровождается повышением степени симметрии кристаллов. Всего выделяют 7 сингоний. В порядке последовательного повышения степени симметрии кристаллов они располагаются следующим образом. 1. Триклинная сингония (клин – угол, наклон, греч.) получила название с учетом той особенности кристаллов, что между всеми гранями углы всегда косые. Кроме С других элементов симметрии нет. 2. Моноклинная (монос – один, греч.) – в одном направлении между гранями кристаллов угол всегда косой. В кристаллах могут присутствовать L2, P и С. Ни один из элементов симметрии не повторяется хотя бы дважды. 3. Ромбическая – получила название по характерному поперечному сечению кристаллов (вспомните углы ромбические 1-го рода). 4. Тригональная – названа по характерному поперечному сечению (треугольник) и многогранным углам (тригональный, дитригональный). Обязательно присутствует одна L3. 5. Тетрагональная – характерны поперечное сечение в форме квадрата и многогранные углы – тетрагональный и дитетрагональный. Обязательно присутствует L4 или Li4. 6. Гексагональная – сечение в форме правильного шестиугольника, многогранные углы – гексагональный и дигексагональный. обязательно присутствие одной L6 или Li6. 7. Кубическая – типична кубическая форма кристаллов. Характерно сочетание элементов симметрии 4L3. Сингонии объединяются в 3 категории: низшую, среднюю и высшую. В низшую категорию объединяются триклинная, моноклинная и ромбическая сингонии. В кристаллах отсутствует главная ось симметрии. В среднюю категорию входят тригональная, тетрагональная и гексагональная сингонии. Характерна одна главная ось симметрии. К высшей категории относится одна кубическая сингония. В отличие от предыдущих категорий для нее характерно несколько главных осей симметрии.
|
|||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 682; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.253.198 (0.012 с.) |