Элементы ограничения многогранников 

Заглавная страница
Избранные статьи
Случайная статья
Познавательные статьи
Новые добавления
Обратная связь
FAQ
Написать работу


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Элементы ограничения многогранников

Поиск

Многогранником называется объемное геологическое тело, отделенное от окружающего пространства элементами ограничения.

Элементами ограничения называют геометрические образы, отделяющие многогранник от окружающего пространства.

К элементам ограничения многогранника относятся грани, ребра, вершины, двугранные и многогранные углы.

Грани – это плоские поверхности, ограничивающие многогранник от внешней среды.

Рёбра – это прямые линии, по которым пересекаются грани.

Вершины – это точки, в которых пресекаются ребра.

Двугранные углы – это углы между двумя соседними гранями. Иначе, это углы при ребрах.

Многогранные углы – это углы между несколькими гранями, сходящимися в одной вершине. Иначе, это углы при вершинах.

Среди многогранных углов различают правильные и неправильные. Если при соединении концов ребер, исходящих из вершины многогранного угла, получается правильная геометрическая фигура (правильный треугольник, прямоугольник, ромб, квадрат, правильный шестиугольник и их производные), то образуется правильный многогранный угол. Если при этой же операции получается неправильная геометрическая фигура (неправильный многоугольник), то такой многогранный угол называется неправильным.

Различают следующие правильные многогранные углы.

1. Тригональный – при соединении концов ребер, исходящих из его вершины, образуется правильный треугольник (тригон):

 

 

2. Ромбический 1-го рода – соединение концов ребер, исходящих из его вершины, дает фигуру в форме ромба:

 

3. Ромбический 2-го рода – фигура, получаемая при соединении концов ребер, исходящих из его вершины, – прямоугольник:

4. Тетрагональный – при соединении концов ребер, исходящих из его вершины, образуется квадрат (тетрагон):

5. Гексагональный – соединение концов ребер, исходящих из его вершины, дает правильный шестиугольник (гексагон):

Данные пять правильных многогранных углов называются основными.

 

Кроме того, из тригонального, тетрагонального и гексагонального углов путем их удвоения образуются следующие три производных правильных многогранных угла.

1. Дитригональный – образуется путем удвоения граней, составляющих тригональный угол (дитригон):

2. Дитетрагоналный – образуется при удвоении числа граней тетрагонального угла (дитетрагон):

3. Дигксагональный – образуется путем удвоения числа граней, ограничивающих гексагональный угол (дигексагон):

Во всех производных правильных многогранных углах двугранные углы равны через один, а все стороны фигуры, образованной при соединении концов ребер, исходящих из вершины, равны.

Таким образом, существует всего 8 правильных многогранных углов. Все остальные многогранные углы являются неправильными. Их возможно бесконечное количество.

Между элементами ограничения многогранников существует математическая зависимость, характеризуемая формулой Эйлера-Декарта: Г (грани) + В (вершины) = Р (ребра) + 2. Например, в кубе 6 граней, 8 вершин и 12 рёбер.

Отсюда: 6+8=12+2.



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 592; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.231 (0.009 с.)