Б. Механические свойства минералов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Б. Механические свойства минералов



Механические диагностические свойства минералов являются внешним проявлением прочности химической связи между составляющими минерал структурными единицами.

1. Твёрдость – способность минерала сопротивляться внешнему механическому воздействию. На твёрдость влияют межатомные расстояния (твёрдость увеличивается с уменьшением межатомных расстояний), строение кристаллической решетки (самая маленькая твердость у слоистых силикатов, самая большая у каркасных силикатов и оксидов), валентность (твёрдость повышается с увеличением валентности катионов и анионов), координационное число (твёрдость повышается с увеличением координационного числа, например: КЧ углерода в алмазе – 4, в графите – 3) и тип химической связи (самая высокая твёрдость у минералов с ковалентным типом связи – алмаз, самая низкая твёрдость - у минералов с молекулярным и ионным типом связи – графит, галит).

Для определения твёрдости в минералогии используют шкалу относительной твёрдости и абсолютную твердость:

1) абсолютная – определяется с помощью твердометра – алмазная квадратная пирамидки, при определённой нагрузке давит на грань минерала и в полученном отпечатке (реплике) замеряется одна из сторон фигуры. Абсолютная твёрдость измеряется в кг/мм2 и рассчитывается по формуле: H = 1854хP/d2, где Р – вес, давящий на алмазную пирамидку (кг), d – длина одной из сторон отпечатка (мм). Самая высокая твердость у алмаза – 10 060 кг/мм2;

2) относительная – определяется относительно предметов, путем царапания по грани или по плоскости спайности минерала. Относительная твёрдость минералов измеряется от 1 до 10:

-шкала Мооса: тальк – 1, гипс – 2, кальцит – 3. флюорит – 4, апатит – 5, ортоклаз – 6, кварц – 7, топаз – 8, корунд – 9, алмаз – 10;

-металлические иголочки: Al – 2-2,5; Cu – 3-3,5; латунь – 4-4,5; Fe – 5-5,5; сталь – 6-6,5.

По М.М.Хрущёву, номер эталона шкалы Мооса приблизительно пропорционален кубическому корню, вычисленному из числа твёрдости, определённому методом алмазной пирамидки.

Твердость всегда определяется на гранях кристаллов. В агрегатах твердость будет ниже.

Различают пассивную и активную твёрдость минералов. Пассивная твёрдостьпроявляется в том, что осколок минерала не может поцарапать грань или плоскость спайности такого же минерала, например: тальк, апатит, топаз, корунд. Активная твёрдость проявляется в том, что осколок минерала может поцарапать грань или плоскость спайности такого же минерала, например: гипс, галит, флюорит, ортоклаз, кварц.

2. Спайность – способность минерала раскалываться по определенным кристаллографическим направлениям, с образованием плоской зеркальной поверхности. Спайность минералов зависитот строения кристаллической решетки и типа химической связи. Различные минералы имеют спайность различной степени совершенства. Выделяют следующие типы спайности минералов:

1) весьма совершенная спайность – минерал способен делиться на тончайшие листочки, очень трудно получить неровный излом (слюды, графит);

2) совершенная спайность – раскалывание минерала происходит преимущественно по спайности и проявляется как зеркальные, ровные поверхности на сколе; трудно получить неровный излом (кальцит, плагиоклазы). Не путать с гранями кристалла;

3) ясная (средняя) спайность – на кусках минерала обнаруживается с трудом, наряду с ровными поверхностями скола возникают и неровные; поверхности скола чаще всего раковистая (ортоклаз);

4) несовершенная спайность – отсутствие спайности; сколы у минералов исключительно неровные, зернистые, раковистые (кварц, нефелин).

В различных минералах, имеющих совершенную спайность, плоскости спайности могут проходить в нескольких кристаллографических направлениях. Например: флюорит, алмаз – по октаэдру; кальцит – по ромбоэдру; галенит – по кубу.

Правило Браве – спайность проходит параллельно плоским сеткам кристаллической решётки с максимальной ретикулярной плотностью.

3. Излом – способность минерала при раскалывании давать ровные или неровные поверхности, проходящие не по спайности.

Различают следующие виды излома:

1) неровный, зернистый, характеризуется неровной поверхностью излома без блестящих спайных участков (апатит);

2) ступенчатый наблюдается у минералов с совершенной спайностью в 3 направлениях, образуются ровные сколы в 2-3 направлениях (галенит);

3) занозистый по своему виду напоминает излом древесины поперёк волокон. Обладают минералы с игольчатым строением (роговая обманка, актинолит, тремолит);

4) раковистый по форме поверхности напоминает раковину и наблюдается у минералов с аморфным строением или с плотной кристаллической решеткой, не обладающих какой-либо степенью спайности (кварц, обсидиан, халцедон, агат).

4. Штриховатость – на гранях кристалла образуются борозды, штрихи, полоски параллельные или наклонные определённым кристаллографическим направлениям кристалла. По своему происхождению штриховатость может быть комбинационной, обусловленной многократным повторением наросших вицинальных граней (алмаз, турмалин), и двойниковой, являющейся результатом сложения минеральных индивидов при образовании полисинтетических двойников (сфалерит, халькопирит, плагиоклазы).Для ряда минералов штриховатость является важным диагностическим свойством (кварц, корунд, пирит и др.) (рис. 8).

Корунд Турмалин Пирит Кварц

 

Рис. 8. Виды штриховки на гранях кристаллов минералов

 

5. Хрупкость и ковкость. С твёрдостью минералов связаны также два других свойства – хрупкость и ковкость. Хрупкость – свойство минерала крошиться при царапании остриём ножа по его поверхности. На поверхности минерала остаётся след с порошком по краям (блёклые руды). Ковкость – свойствоминерала оставлять гладкий блестящий след при царапании остриём ножа по его поверхности. Ковкие минералы при ударе по ним молотком расплющиваются в тонкие пластинки или могут быть вытянуты в очень тонкие нити (халькозин, золото, медь). Хрупкость минерала может также определяться твердометром и устанавливается по появлению трещин в исследуемом минерале под нагрузкой. Нагрузка, при которой появляется первая трещина, носит название «числа хрупкости» и измеряется в граммах.

Различают следующие группы минералов по хрупкости (по С.Д.Дмитриеву):

1) весьма хрупкий (при всех нагрузках, например: пирит, гипс);

2) хрупкий (нагрузка 20 г и более, например: пентландит, тетраэдрит);

3) слабо пластичный (нагрузка 50 г и более, например: кварц, пирротин);

4) пластичный (нагрузка 100 г и более, например: магнетит);

5) весьма пластичный (при нагрузке 200 г трещины не образуются, например: галенит, медь).

Гибкость и упругость

Гибкость – это свойство некоторых минералов изгибаться при механическом воздействии без хрупкой деформации. Гибкость наиболее выражена у минералов листоватого или волокнистого строения, например: биотит, мусковит, группа хлоритов, тальк, хризотил-асбест.

Упругость – это свойство некоторых минералов деформироваться под влиянием определённых усилий и возвращаться в первоначальное, недеформированное состояние после удаления этих усилий. Примером могут послужить минералы группы слюд – флогопит, мусковит, лепидомелан.

В. Плотность минералов

Плотность (ρ) – одна из главнейших констант минералов. Определяется, как отношение массы минерального зерна на единицу его объёма, измеряется в г/см3. Значение плотности минеральных видов колеблется в широких пределах: от значений, меньших единицы (озокерит, лёд), до 23, 0 г/см3 (минералы группы осьмистого ирридия).

При макроскопическом определении минералов их плотность оценивается приблизительным сравнением в руке, на основании чего можно отнести минералы к группе низкой (ρ =1,0 – 3,0 г/см3, например: янтарь, кварц), средней (ρ =3,0 - 7,0 г/см3, например: пирит, барит) или высокой (ρ =7,0 – 10,0 г/см3, например: галенит, миметезит) плотности. Кроме этих групп существуют минералы с очень высокой плотностью (ρ = > 10 г/см3, например: сперрилит, уранинит) и минералы с очень низкой плотностью (ρ = < 1,0 г/см3, например: озокерит, лёд).

Как показывают подсчёты, в минеральном мире преобладают минералы с низкой плотностью.

Плотность зависит от химического состава и структуры минерала, причём особенно важную роль играет атомный вес элементов, входящих в в состав минерала, а также их валентность и размер ионных радиусов.

Полиморфные разности вещества, имеющие различную кристаллическую структуру, имеют различную плотность. Например: гексагональная полиморфная модификация углерода – графит имеет плотность 2,2 г/см3, а кубическая – алмаз имеет плотность 3,5 г/см3.

В соответствии с колебаниями химического состава один и тот же минерал может иметь различную плотность. Например, безжелезистая разновидность сфалерита (клейофан) имеет плотность 3,5 г/см3, а железистая (марматит) – 4,2 г/см3. Однако не всегда эти колебания значения плотности минерала могут быть вызваны изменением химического состава. Следует учитывать проявления неоднородности, пористости и трещиноватости исследуемого материала.

Атомный вес особенно влияет на плотность. Так, минералы бария и свинца (витерит, церуссит) имеют значительную плотность соответствующих минералов кальция (кальцит).

Валентность атомов и ионов, входящих в состав минерала, имеет важное значение для плотности: увеличение валентности аниона и уменьшение валентности катиона приводят к повышению отношения числа катионов к числу анионов в минерале и, следовательно, к повышению процента заполнения катионами пустот. Это приводит к увеличению значение плотности минерала.

Для определения плотности минералов существуют многочисленные методы и приспособления. Наибольшим распространением пользуются пикнометрический метод и метод тяжёлых жидкостей.

При пикнометрическом методе минерал в виде мелких зёрен взвешивается в воздухе, затем взвешивается сам пикнометр и минерал в пикнометре с водой. Плотность минерала высчитывается по формуле:

ρ=М/Р+М+Р1,

где М - вес минерала,

Р - вес пикнометра с водой,

Р1- вес пикнометра с водой и минералом.

Определение плотности минерала с помощью тяжёлых жидкостей имеет большое значение в минералогической практике. Наиболее часто употребляются следующие тяжёлые жидкости: бромоформ (CHBr3)–2,89 г/см3, жидкость Туле (KJ+HgJ2) – 3,2 г/см3, жидкость Клеричи (CH2(COO)2Tl+HCOOTl) – 4,27 г/см3.



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 853; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.156.156 (0.011 с.)