Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устойчивое и подвижное радиоактивное равновесиеСодержание книги
Поиск на нашем сайте
При радиоактивном распаде число ядер элемента dN, распавшихся за бесконечно малый промежуток времени dt, пропорционально числу ядер N, еще не распавшихся к моменту времени t. dN=-λNdt, (5.1) где λ — коэффициент пропорциональности, характеризующий вероятность распада ядра в единицу времени и называемый постоянной распада данного радиоактивного изотопа. Интегрируя уравнение (5.1) и обозначая число атомов радиоактивного вещества в начальный момент времени (t = 0) через N0, получим N = NoeXt (5.2) Из формулы (5.2) следует, что радиоактивный распад подчиняется экспоненциальному закону. В полулогарифмической системе координат (t, lnN) соотношение (5.2) изображается прямой линией, угловой коэффициент которой определяет постоянную распада λ: lnN=lnN0-Xt (5.3) Из уравнения (5.1) следует также, что произведение Ш характеризует скорость радиоактивного распада, называемую обычно радиоактивностью или просто активностью (обозначается А): А = Ж =-dN/dt. (5.4) Зная величину λ, можно вычислить среднюю продолжительность жизни tЯ радиоактивного ядра. Так как согласно выражению (1) суммарная продолжительность жизни атомов, распадающихся в промежуток времени между t и t + dt, равна tλNdt, то Со tЯ------ 1 tMdt = (5.5) Чаще продолжительность жизни радиоактивных элементов принято характеризовать не значением tЯ, а периодом полураспада Т — временем, на протяжении которого распадается половина всех атомов данного радиоактивного элемента. Полагая в уравнении (5.2) N = No/2 при t = T, получим Т = ln2/λ ≈ 0,693 /λ = 0,693 tЯ (5.6) Постоянная распада λ и период полураспада Т являются характерными величинами каждого радиоактивного элемента и имеют для него строго определенные значения. Для различных же элементов эти параметры меняются в больших пределах. Когда рассматривается распад не отдельно взятого радиоактивного элемента, а образующегося при этом радиоактивного продукта его распада (дочернего элемента), закон изменения содержания последнего во времени может быть найден следующим образом. Предположим, что в начальный момент времени t = 0 имелось N01 атомов исходного элемента, а к моменту времени t осталось N1 атомов исходного и накопилось N2 атомов дочернего элементов. Скорость накопления дочернего элемента dN2/dt, очевидно, будет определяться разностью скоростей распада исходного и дочернего элементов: ядг —± = JllN1-A2N2 (5.7) где λ1 и λ2 — постоянные распада исходного и дочернего элементов соответственно. Подставив в выражение (5.7) значение Iyi iVoi е 155 получим линейное неоднородное дифференциальное уравнение первого порядка e^t (5.8)
*2^ л2-л1 или с учетом формулы (5.2): £. = ^_. (5.11) Выражение (5.11) определяет состояние подвижного равновесия, при котором отношение количества исходного вещества и продуктов его распада стремится к некоторому постоянному значению. Если исходное вещество распадается несоизмеримо медленнее продукта его распада (λ2» Х\), то для того же достаточно большого промежутка времени формула (5.11) приобретает вид: N7 Я, Т7 A7N7 л..... или _2_2. = i_ (5.12) Это выражение характеризует состояние устойчивого равновесия, когда число распадающихся атомов исходного вещества равно числу распадающихся атомов продукта его распада. Убыль дочернего вещества вследствие его распада полностью компенсируется его образованием из исходного. Классическим примером такого равновесия является равновесие между ураном (Т = 4.49 109 лет) и радием (Т = 1600 лет), которое наступает при истечении большого промежутка лет (более 16000 лет) и наблюдается в хорошо сохранившихся горных породах и минералах, вынос и привнос урана или тория в которых исключены. Необходимо заметить, что процессы радиоактивного распада носят статистический характер и высокая статистическая точность измерений радиоактивности обеспечивается лишь в случае, когда измерения проводятся на протяжении достаточно большого промежутка времени.
|
|||||
Последнее изменение этой страницы: 2017-02-17; просмотров: 383; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.177.116 (0.007 с.) |