Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Бернулли для струйки и потока идеальной жидкостиСодержание книги
Поиск на нашем сайте
Воспользуемся основным законом механики, а именно: Равнодействующая всех сил, действующих на данное тело, равна массе тела, умноженной на ускорение, с которым движется это тело. Полная сила инерции равна: I = - m(dV/dt). Будучи отнесенной к единице массы, полная сила инерции даст единичную силу инерции. Ее проекции на координатные оси будут равны: , , . Теперь необходимо внести эти составляющие в уравнения Эйлера дл гидростатики и получим уравнения всех единичных сил, действующих движущейся жидкости. Преобразуем уравнения Эйлера к следующему виду: Или после преобразований Эти уравнения носят название дифференциальных уравнений Эйлера для движущейся идеальной жидкости. Они устанавливают связь между проекциями объемных, массовых сил и скоростей, давлением и плотностью жидкости и являются основой для изучения некоторых вопросов гидродинамики. Уравнения не учитывают ни си л тре н ия, ни сил сцепления (вязкости), т.к. уравнения получены из уравнений статики, а в статических уравнениях данные величины не фигурируют. Далее рассмотрим уравнения живых сил, для чего умножим уравнения у Эйлера на dx, dy, dz соответственно, и сложим их почленно: . Для установившегося движения в скобках слева стоит полный дифференциал давления dp. Справа будем иметь: dx/dt = Vx; dy/dt = VY; dz/dt = Vz Тогда VxdVx = d(Vx2/2); VydVy = d(VY2/2); VzdVz = d(Vz2/2). Но сумма полных дифференциалов трех составляющих скорости по осям х, у, z равна полному дифференциалу скорости: d(Vx2/2) +d(VY2/2) +d(Vz2/2) =d(V2/2) Окончательно получим закон живых сил в следующем виде: d(V2/2) = Xdx + Ydy +Zdz -dp/p Закон живых сил можно сформулировать в следующем виде: дифференциал кинетической энергии частицы идеальной жидкости при установившемся движении равен сумме элементарных работ сил тяжести и сил давления. Рассмотрим наиболее важный для практики случай движения жидкости: Расположим в несжимаемой жидкости, находящейся под действием силы тяжести в установившемся движении, оси координат так, что ось z была направлена вверх параллельно направлению действия силы тяжести. Тогда X=Y=0, Z=-g (знак «минус» поставлен, т.к. ось Z направлена вверх, а ускорение g вниз) и уравнение живых сил перепишется в следующем виде: . Перенеся все составляющие в левую часть, получим: . Разделим каждый член на g и сумму дифференциалов заменим дифференциалом суммы: . После интегрирования получим уравнение Бернулли для элементарной струйки жидкости в установившемся движении: .
Дифференциал равен нулю, если под знаком дифференциала стоит постоянная величина. Все три члена уравнения Бернулли представляют собой механическую энергию, поэтому можно сделать следующее заключение: вдоль линии тока несжимаемой и невязкой жидкости запас механической энергии, отнесенный к единице массы, веса или объема остается постоянным. Механическую энергию жидкости, отнесенную к единице веса, называют полным напором; суммы энергии сил давления и положения, отнесенную к единице веса - статическим напором. Вдоль данной линии тока (в установившемся движении жидкости) сумма скоростного и статического напоров остается постоянной. Если вспомним, что P/pg пьезометрический напор, a z геометрический, а также введя понятие скоростного (динамического) напора V2/2g, то можно сказать, что сумма скоростного, пьезометрического и геометрического напоров вдоль линии тока есть величина постоянная. Так как сумма z+P/pg представляет собой удельную потенциальную энергию жидкости, a V2/2g- удельную кинетическую энергию, то уравнение Бернулли устанавливает постоянство полной энергии (суммы кинетической и потенциальной энергии) и является частным случае/закона сохранения энергии. Получим теперь уравнение Бернулли для потока идеальной жидкости, для чего подсчитаем полную энергию жидкости в живом сечении, умножив все составляющие на весовой расход элементарной струйки и проинтегрировав по площади живого сечения : . Т.к. давление распределяется по закону гидростатики, то z+P/pg =const и может быть вынесено за знак интеграла. Кроме того, скорости всех элементарных трубок одинаковы, поэтому также выносится за знак интеграла. Тогда получим: . Возвратясь теперь к размерности удельной энергии, получим уравнение Бернулли для потока идеальной жидкости: . Уравнение не учитывает потерь напора и неравномерности распределения скоростей по сечению потока, возникающих при движении • реальной жидкости. Рассмотрим построение пьезометрической и напорной линии для случая движения идеальной жидкости (рис. 28). В случае идеальной жидкости полный напор (полная энергия) остается постоянной вдоль всего потока, а потенциальная и кинетическая энергии (гидростатический и скоростной напоры) могут переходить друг в друга. Например: уменьшение диаметра трубопровода приведет к увеличению скорости и скоростного напора, соответственно, давление в этом сечении (пьезометрический напор) уменьшится. Расположим в нескольких сечениях пьезометрические и гидродинамические трубки. Для идеальной жидкости во всех гидродинамических трубках уровень жидкости будет одинаков и выше, чем в пьезометрических, на величину скоростного напора (удельной кинетической энергии). Соединим уровни жидкости в пьезометрах - получим пьезометрическую линию. А, соединив уровни жидкости в гидродинамических трубках, получим напорную линию. Напорная линия представляет собой горизонтальную прямую.
Рисунок 28 - Пример построения пьезометрической и напорной линии для идеальной жидкости
|
||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 226; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.116.33 (0.009 с.) |