Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Базы знаний и системы управления знаниями организации.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Понятие «управление знаниями» (КМ — Knowledge Management) появилось в середине 90-х годов в крупных корпорациях, где проблемы обработки информации приобрели особую остроту и стали критическими. При этом стало очевидным, что основным узким местом является обработка знаний, накопленных специалистами компании, так как именно знания обеспечивают преимущество перед конкурентами. Часто информации в компаниях накоплено даже больше, чем они в состоянии обработать. Различные компании пытаются решать этот вопрос по-разному, но при этом каждая компания стремится увеличить эффективность обработки знаний. Ресурсы знаний различаются в зависимости от отраслей индустрии и приложений, но, как правило, включают руководства, письма, новости, информацию о заказчиках, сведения о конкурентах и данные, накопившиеся в процессе разработки. Для применения КМ-систем используются разнообразные технологии: электронная почта; базы и хранилища данных (Data Wharehouse); системы групповой поддержки; броузеры и системы поиска; корпоративные сети и Интернет; экспертные системы и базы знаний; интеллектуальные системы. Традиционно проектировщики систем КМ ориентировались лишь на отдельные группы потребителей — главным образом менеджеров. Более современные КМ-системы спроектированы уже в расчете на целую организацию. Хранилища данных, которые работают по принципу центрального склада, были одним из первых инструментариев КМ. Как правило, хранилища содержат многолетние версии обычной БД, физически размещаемые в той же самой базе. Когда все данные содержатся в едином хранилище, изучение связей между отдельными элементами может быть более плодотворным. При этом активы знаний могут находиться в различных местах: в базах данных, базах знаний, в картотечных блоках, у специалистов и могут быть рассредоточены по всему предприятию. Слишком часто одна часть предприятия повторяет работу другой части просто потому, что невозможно найти и использовать знания, находящиеся в других частях предприятия. Управление знаниями — это совокупность процессов, которые управляют созданием, распространением, обработкой и использованием знаний внутри предприятия. Необходимость разработки систем КМ обусловлена следующими причинами: • работники предприятия тратят слишком много времени на поиск необходимой информации; • опыт ведущих и наиболее квалифицированных сотрудников используется только ими самими; • ценная информация захоронена в огромном количестве документов и данных, доступ к которым затруднен; • дорогостоящие ошибки повторяются из-за недостаточной информированности и игнорирования предыдущего опыта. Важность систем КМ обусловлена также тем, что знание, которое не используется и не возрастает, в конечном счете становится устаревшим и бесполезным, так же, как деньги, которые сохранены без того, чтобы стать оборотным капиталом, в конечном счете теряют свою стоимость, пока не обесценятся. Напротив, знание, которое распространяется, приобретается и обменивается, генерирует новое знание. Управление знаниям и корпоративная память Большинство обзоров концепции управления знания (КМ) уделяет внимание только первичной обработке корпоративной информации типа электронной почты, программного обеспечения коллективной работы или гипертекстовых баз данных (например fWiig, 1996]). Они формируют существенную часть из необходимой, но определенно не достаточной технической инфраструктуры для управления знаниями. Одним из новых решений по управлению знаниями является понятие корпоративной памяти (corporate memory), которая по аналогии с человеческой памятью позволяет пользоваться предыдущим опытом и избегать повторения ошибок. Корпоративная память фиксирует информацию из различных источников предприятия и делает эту информацию доступной специалистам для решения производственных задач. Корпоративная память не позволяет исчезнуть знаниям выбывающих специалистов (уход на пенсию, увольнение и пр.). Она хранит большие объемы данных, информации и знаний из различных источников предприятия. Они представлены в различных формах, таких как базы данных, документы и базы знаний. При разработке систем КМ можно выделить следующие этапы: 1. Накопление. Стихийное и бессистемное накопление информации в организации. 2 Извлечение. Процесс, идентичный традиционному извлечению знаний для ЭС. Это один из наиболее сложных и трудоемких этапов. От его успешности зависит дальнейшая жизнеспособность системы. 3 Структурирование. На этом этапе должны быть выделены основные понятия, выработана структура представления информации, обладающая максимальной наглядностью, простотой изменения и дополнения. 4 Формализация. Представление структурированной информации в форматах машинной обработки, то есть на языках описания данных и знаний. 5 Обслуживание. Под процессом обслуживания понимается корректировка формализованных данных и знаний (добавление, обновление): «чистка», то есть удаление устаревшей информации; фильтрация данных и знаний для поиска информации, необходимой пользователям. Если первые четыре этапа обычны для инженерии знаний, то последний является специфичным для систем управления знаниями. Как уже было сказано, он распадается на три более мелких процесса: Корректировка формализованных знаний (добавление, обновление). Удаление устаревшей информации. Фильтрация знаний для поиска информации, необходимой пользователю, выделяет компоненты данных и знаний, соответствующие требованиям конкретного пользователя. При помощи той же процедуры пользователь может узнать местонахождение интересующей его информации.
Экспертные системы. Определение, назначение требования к экспертным системам. Структура экспертных систем.
Экспертная система - система искусственного интеллекта, включающая знания об определенной слабо структурированной и трудно формализуемой узкой предметной области и способная предлагать и объяснять пользователю разумные решения. Экспертная система состоит из базы знаний, механизма логического вывода и подсистемы объяснений. Важность экспертных систем состоит в следующем: технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект; технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений; высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.; объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.
Экспертная система - это программа, которая ведет себя подобно эксперту в некоторой, обычно узкой прикладной области. Типичные применения экспертных систем включают в себя такие задачи, как медицинская диагностика, локализация неисправностей в оборудовании и интерпретация результатов измерений. Экспертные системы должны решать задачи, требующие для своего решения экспертных знаний в некоторой конкретной области. В той или иной форме экспертные системы должны обладать этими знаниями. Поэтому их также называют системами, основанными на знаниях. Однако не всякую систему, основанную на знаниях, можно рассматривать как экспертную. Экспертная система должна также уметь каким-то образом объяснять свое поведение и свои решения пользователю, так же, как это делает эксперт-человек. Это особенно необходимо в областях, для которых характерна неопределенность, неточность информации (например, в медицинской диагностике). В этих случаях способность к объяснению нужна для того, чтобы повысить степень доверия пользователя к советам системы, а также для того, чтобы дать возможность пользователю обнаружить возможный дефект в рассуждениях системы. В связи с этим в экспертных системах следует предусматривать дружественное взаимодействие с пользователем, которое делает для пользователя процесс рассуждения системы "прозрачным".
Часто к экспертным системам предъявляют дополнительное требование - способность иметь дело с неопределенностью и неполнотой. Информация о поставленной задаче может быть неполной или ненадежной; отношения между объектами предметной области могут быть приближенными. Например, может не быть полной уверенности в наличии у пациента некоторого симптома или в том, что данные, полученные при измерении, верны; лекарство может стать причиной осложнения, хотя обычно этого не происходит. Во всех этих случаях необходимы рассуждения с использованием вероятностного подхода. В самом общем случае для того, чтобы построить экспертную систему, мы должны разработать механизмы выполнения следующих функций системы: 1. решение задач с использованием знаний о конкретной предметной области возможно, при этом возникнет необходимости иметь дело с неопределенностью; 2. взаимодействие с пользователем, включая объяснение намерений и решений системы во время и после окончания процесса решения задачи. Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма). Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др. Обобщенная структура экспертной системы представлена на рисунке 8. Следует учесть, что реальные экспертные системы могут иметь более сложную структуру. Процесс функционирования экспертной системы можно представить следующим образом: пользователь, желающий получить необходимую информацию, через пользовательский интерфейс посылает запрос к экспертной системе, решатель пользуясь базой знаний, генерирует и выдает пользователю подходящую рекомендацию, объясняя ход своих рассуждений при помощи подсистемы объяснений.
Пользователь Инженер + Эксперт по знаниям
Рисунок 8: Структура экспертной системы
Пользователь – специалист предметной области, для которого предназначена система. Обычно его квалификация недостаточно высока и поэтому он нуждается в помощи и поддержке своей деятельности со стороны ЭС. Инженер по знаниям – специалист в области искусственного интеллекта, выступающий в роли промежуточного буфера между экспертом и базой знаний. Синонимы: когнитолог, инженер-интерпритатор, аналитик. Интерфейс пользователя – комплекс программ, реализующих диалог пользователя с ЭС как на стадии ввода информации, так и при получении результатов. База знаний – ядро ЭС, совокупность знаний предметной области, записанная на машинный носитель в форме, понятной эксперту и пользователю. Решатель – программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в БЗ. Синонимы: дедуктивная машина, машина вывода, блок логического вывода. Подсистема объяснений – программа, позволяющая пользователю полечить ответы на вопросы: «Как была получена та или иная рекомендация?» и «Почему система приняла такое решение?» Ответ на вопрос «как» - это трассировка всего процесса получения решения с указанием использованных фрагментов БЗ, то есть всех шагов цепи умозаключений. Ответ на вопрос «почему» - ссылка на умозаключение, непосредственно предшествовавшие полученному решению, то есть отход на один шаг назад. Развитые подсистемы объяснений поддерживают и другие типы вопросов. Интеллектуальный редактор БЗ – программа, представляющая инженеру по знаниям возможность создавать БЗ в диалоговом режиме. Включает в себя систему вложенных меню, шаблонов языка представления знаний, подсказок («help» - режим) и других сервисных средств, облегчающих работу с базой. Структура экспертных систем Типичная статическая ЭС состоит из следующих основных компонентов (рис. 9.): решателя (интерпретатора); рабочей памяти (РП), называемой также базой данных (БД); базы знаний (БЗ); компонентов приобретения знаний; объяснительного компонента; диалогового компонента. База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе. База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области. Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи. Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом. Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату. Рисунок 9: Структура статической ЭС
Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы. В разработке ЭС участвуют представители следующих специальностей: эксперт в проблемной области, задачи которой будет решать ЭС; инженер по знаниям - специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний); программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС. Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его. Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний. Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом. Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано. Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).
|
||||
Последнее изменение этой страницы: 2017-01-25; просмотров: 737; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.67.56 (0.143 с.) |