Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Инструментальные средства построения экспертных систем. Языки и оболочки для создания экспертных систем.

Поиск

 

Рассмотрим особенности инструментальных средств для создания статических ЭС на примере комплекса ЭКО, разработанного в РосНИИ ИТ и АП. Наиболее успешно комплекс применяется для создания ЭС, решающих задачи диагностики (технической и медицинской), эвристического оценивания (риска, надежности и т.д.), качественного прогнозирования, а также обучения.

Комплекс ЭКО используется: для создания коммерческих и промышленных экспертных систем на персональных ЭВМ, а также для быстрого создания прототипов экспертных систем с целью определения применимости методов инженерии знаний в некоторой конкретной проблемной области.

На основе комплекса ЭКО было разработано более 100 прикладных экспертных систем. Среди них отметим следующие:

- поиск одиночных неисправностей в персональном компьютере;

- оценка состояния гидротехнического сооружения (Чарвакская ГЭС);

- подготовка деловых писем при ведении переписки с зарубежными партнерами;

- проведение скрининговой оценки иммунологического статуса;

- оценка показаний микробиологического обследования пациента, страдающего неспецифическими хроническими заболеваниями легких;

Комплекс ЭКО включает три компонента.

Ядром комплекса является интегрированная оболочка экспертных систем ЭКО, которая обеспечивает быстрое создание эффективных приложений для решения задач анализа в статических проблемных средах типа.

При разработке средств представления знаний оболочки преследовались две основные цели: эффективное решение достаточно широкого и практически значимого класса задач средствами персональных компьютеров; гибкие возможности по описанию пользовательского интерфейса и проведению консультации в конкретных приложениях. При представлении знаний в оболочке используются специализированные (частные) -утверждения типа "атрибут - значение" и частные правила, что позволяет исключить ресурсоемкую операцию сопоставления по образцу и добиться эффективности разрабатываемых приложений. Выразительные возможности оболочки удалось существенно расширить за счет интегрированности, обеспечиваемой путем вызова внешних программ через сценарий консультации и стыковки с базами данных (ПИРС и dBase IV) и внешними программами. В оболочке ЭКО обеспечивается слабая структуризация БЗ за счет ее разделения на отдельные компоненты - для решения отдельных подзадач в проблемной среде - модели (понятию "модель" ЭКО соответствует понятие "модуль" базы знаний системы G2).

С точки зрения технологии разработки ЭС оболочка поддерживает подходы, основанные на поверхностных знаниях и структурировании процесса решения.

Оболочка функционирует в двух режимах: в режиме приобретения знаний и в режиме консультации (решения задач). В первом режиме разработчик ЭС средствами диалогового редактора вводит в БЗ описание конкретного приложения в терминах языка представления знаний оболочки. Это описание компилируется в сеть вывода с прямыми адресными ссылками на конкретные утверждения и правила. Во втором режиме оболочка решает конкретные задачи пользователя в диалоговом или пакетном режиме. При этом решения выводятся от целей к данным (обратное рассуждение).

Для расширения возможностей оболочки по работе с глубинными знаниями комплекс ЭКО может быть дополнен компонентом К-ЭКО (конкретизатором знаний), который позволяет описывать закономерности в проблемных средах в терминах общих (абстрактных) объектов и правил. К-ЭКО используется на этапе приобретения знаний вместо диалогового редактора оболочки для преобразования общих описаний в конкретные сети вывода, допускающие эффективный вывод решений средствами оболочки ЭКО. Таким образом, использование конкретизатора обеспечивает возможность работы с проблемными средами типа 2.

Третий компонент комплекса - система ИЛИС, позволяющая создавать ЭС в статических проблемных средах за счет индуктивного обобщения данных (примеров) и предназначенная для использования в тех приложениях, где отсутствие правил, отражающих закономерности в проблемной среде, возмещается обширным экспериментальным материалом. Система ИЛИС обеспечивает автоматическое формирование простейших конкретных правил и автономное решение задач на их основе; при этом используется жесткая схема диалога с пользователем. Поскольку при создании реальных приложений эксперты представляют, как правило, и знания о закономерностях в проблемной среде, и экспериментальный материал (для решения частных подзадач), возникает необходимость в использовании правил, сформированных системой ИЛИС, в рамках более сложных средств представления знаний. Комплекс ЭКО обеспечивает автоматический перевод таких правил в формат оболочки ЭКО. В результате удается получить полное (адекватное) представление реальной проблемной среды, кроме того, задать гибкое описание организации взаимодействия ЭС с конечным пользователем.

Традиционные языки программирования

Языки искусственного интеллекта

Это прежде всего Лисп (LISP) и Пролог (Prolog) [8] - наиболее распространенные языки, предназначенные для решения задач искусственного интеллекта. Есть и менее распространенные языки искусственного интеллекта, например РЕФАЛ, разработанный в России. Универсальность этих языков меньшая, нежели традиционных языков, но ее потерю языки искусственного интеллекта компенсируют богатыми возможностями по работе с символьными и логическими данными, что крайне важно для задач искусственного интеллекта. На основе языков искусственного интеллекта создаются специализированные компьютеры (например, Лисп-машины), предназначенные для решения задач искусственного интеллекта. Недостаток этих языков - неприменимость для создания гибридных экспертных систем.

Специальный программный инструментарий

В эту группу программных средств искусственного интеллекта входят специальные инструментарии общего назначения. Как правило, это библиотеки и надстройки над языком искусственного интеллекта Лисп: KEE (Knowledge Engineering Environment), FRL (Frame Representation Language), KRL (Knowledge Represantation Language), ARTS и др. [1,4,7,8,10], позволяющие пользователям работать с заготовками экспертных систем на более высоком уровне, нежели это возможно в обычных языках искусственного интеллекта.

"Оболочки"

Под "оболочками: (shells) понимают "пустые" версии существующих экспертных систем, т.е. готовые экспертные системы без базы знаний. Примером такой оболочки может служить EMYCIN (Empty MYCIN - пустой MYC1N) [8], которая представляет собой незаполненную экспертную систему MYCIN. Достоинство оболочек в том, что они вообще не требуют работы программистов для создания готовой экспертной системы. Требуется только специалисты) в предметной области для заполнения базы знаний. Однако если некоторая предметная область плохо укладывается в модель, используемую в некоторой оболочке, заполнить базу знаний в этом случае весьма не просто.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 453; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.27.41 (0.068 с.)